Fair Lake
Environmental Carrying Capacity Study

Prepared for:
Four Township Water Resources Council
P.O. Box 634
Richland, MI 49083-0634

Prepared by:
Progressive AE
1811 4 Mile Road, NE
Grand Rapids, MI 49525-2442
616/361-2664

July 2005

Project No: 51830108
Fair Lake
Environmental Carrying Capacity Study

Prepared for:
Four Township Water Resources Council
P.O. Box 634
Richland, MI 49083-0634

Prepared by:
Progressive AE
1811 4 Mile Road, NE
Grand Rapids, MI 49525-2442
616/361-2664

July 2005

Project No: 51830108
# Table of Contents

INTRODUCTION ................................................................. 1
LAKE AND WATERSHED CHARACTERISTICS ............................... 2
LAKE WATER QUALITY .......................................................... 8
  Temperature ............................................................... 9
  Dissolved Oxygen ....................................................... 9
  Phosphorus .............................................................. 10
  Chlorophyll-a ............................................................ 10
  Secchi Transpareny ..................................................... 10
  Fair Lake Water Quality .............................................. 11
ENVIRONMENTAL .............................................................. 12
  The Fair Lake Watershed .............................................. 12
  The Importance of Phosphorus ....................................... 14
  Environmental Carrying Capacity Calculations .................... 14
CONCLUSIONS AND RECOMMENDATIONS ................................. 16
  Wetland Protection ..................................................... 16
  Keyhole or Funnel Development Control Ordinances ............... 17
  Shoreland Overlay District ........................................... 18
  Open Space Development ............................................. 18
  Low Impact Development ............................................. 19
  Information and Education .......................................... 21

APPENDICES
  Appendix A - Michigan Court of Appeals Decision and Riparian Lot Use Regulations
  Appendix B - Sample Shoreland Overlay District
  Appendix C - Lakeside Landscaping Guidelines

REFERENCES
Introduction

The Four Township Water Resources Council was established in 1994 as a volunteer, non-profit group dedicated to protecting water quality in Barry and Prairieville Townships in Barry County and Richland and Ross Townships in Kalamazoo County (Figure 1). The Council's mission is to assist with the development and implementation of land use strategies that retain the rural environment currently enjoyed by township residents, protecting lakes, streams, drinking water, agriculture, and open space. In 1998 and 2002, the Council received grants from the U.S. Environmental Protection Agency under Section 319 of the Federal Clean Water Act to implement the Four Township Water Resources Project. As part of this project, the environmental carrying capacity of Fair Lake has been evaluated.

For the purposes of this report, environmental carrying capacity refers to a lake's ability to sustain pollution inputs without degrading water quality. A key element of an environmental carrying capacity evaluation is an analysis of the watershed. A watershed is a geographic region within which water drains to a particular lake or stream. Watershed management is important since land use activities in a watershed directly impact water quality. Attempts to implement water quality protection strategies that do not focus on the watershed are often unsuccessful in that they fail to address problems and issues holistically.

The purpose of this report is to provide lake residents and local governmental decision makers with information that will help protect the water quality of Fair Lake over the long term. The report includes a description of the physical characteristics of Fair Lake and its watershed, a discussion of lake water quality, an environmental carrying capacity evaluation, and recommendations to minimize the impacts of watershed development.

Figure 1. Project location map.
Lake and Watershed Characteristics

Fair Lake is located in Sections 1, 2, 11, and 12 of Barry Township in Barry County (T1N; R9W). Information regarding the physical characteristics of Fair Lake and its watershed is provided in Table 1. A depth contour map of Fair Lake is shown in Figure 2.

### TABLE 1

**FAIR LAKE PHYSICAL CHARACTERISTICS**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Surface Area</td>
<td>226 Acres</td>
</tr>
<tr>
<td>Maximum Depth</td>
<td>30 Feet</td>
</tr>
<tr>
<td>Mean Depth</td>
<td>9.0 Feet</td>
</tr>
<tr>
<td>Lake Volume</td>
<td>2,025 Acre-Feet</td>
</tr>
<tr>
<td>Shoreline Length</td>
<td>5.1 Miles</td>
</tr>
<tr>
<td>Shoreline Development Factor</td>
<td>2.4</td>
</tr>
<tr>
<td>Lake Elevation</td>
<td>919 Feet</td>
</tr>
<tr>
<td>Watershed Area</td>
<td>1,028 Acres</td>
</tr>
<tr>
<td>Ratio of Lake Area to Watershed Area</td>
<td>1: 4.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Watershed Land Uses</th>
<th>Acres</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>78</td>
<td>8%</td>
</tr>
<tr>
<td>Agricultural</td>
<td>426</td>
<td>41%</td>
</tr>
<tr>
<td>Open Space</td>
<td>97</td>
<td>9%</td>
</tr>
<tr>
<td>Forested</td>
<td>186</td>
<td>18%</td>
</tr>
<tr>
<td>Wetlands</td>
<td>241</td>
<td>23%</td>
</tr>
<tr>
<td>Total</td>
<td>1,028</td>
<td>100%</td>
</tr>
</tbody>
</table>

1 Watershed area, shoreline length, lake elevation, and lake surface area were determined by examining United States Geological Survey topographic map (Banfield Quadrangle). Lake volume and maximum and mean depths were derived from a Michigan Conservation Department depth contour map of Fair Lake. Lake volume and shoreline development factor were calculated according to Lind (1974) using shoreline and contour areas derived from Microstation computer-aided design mapping. Land use acreage was derived from Michigan Department of Natural Resources' Michigan Resource Information System mapping (1978), updated with 1996 aerial photography.
Figure 2. Fair Lake depth contour map.
Fair Lake has a surface area of 226 acres, a maximum depth of 30 feet, and a mean or average depth of approximately 9 feet. The lake contains 2,025 acre-feet of water, a volume that would cover an area of 2,025 acres or approximately 3.2 square miles to a depth of one foot. Fair Lake has a shoreline length of 5.1 miles and a shoreline development factor of 2.4. Shoreline development factor is a measure of the degree of irregularity in the shape of the shoreline. A perfectly round lake would have a shoreline development factor of 1.0. The higher the shoreline development factor, the more convoluted the shoreline. The shoreline development factor of 2.4 for Fair Lake indicates that the shoreline is 2.4 times longer than if the lake was perfectly round. Fair Lake has an elevation of 919 feet above sea level. Water flows from Fair Lake to Augusta Creek and ultimately into Lake Michigan via the Kalamazoo River. Fair Lake is the southernmost location in Michigan with nesting loons.

The watershed for Fair Lake is 1,028 acres in area, a land area 4.5 times larger than the lake itself (Figure 3). Much of the shoreline of Fair Lake is wetland. However, there are several residential subdivisions on the southwest shore, and two smaller, isolated residential areas on the east and northeast portions of the lake (Figure 4). Currently, approximately 100 seasonal and year-round homes border the lake and are served by a sanitary sewer system. Most of the remainder of the watershed is farmland, primarily to the west of Fair Lake, and forested land, primarily on the east side of the lake (Figures 4 and 5).
LAKE AND WATERSHED CHARACTERISTICS

Figure 3. Fair Lake watershed map.
Figure 4. Fair Lake watershed land use map.
Figure 5. Fair Lake watershed aerial photography.
Lake Water Quality

Lake water quality is determined by a unique combination of processes that occur both within and outside of the lake. In order to make sound management decisions, it is necessary to have an understanding of the current physical, chemical, and biological condition of the lake, and the potential impact of drainage from the surrounding watershed.

Lakes are commonly classified as oligotrophic, mesotrophic, or eutrophic. Oligotrophic lakes are generally deep and clear with little aquatic plant growth. These lakes maintain sufficient dissolved oxygen in the cool, deep bottom waters during late summer to support cold water fish such as trout and whitefish. By contrast, eutrophic lakes are generally shallow, turbid, and support abundant aquatic plant growth. In deep eutrophic lakes, the cool bottom waters usually contain little or no dissolved oxygen. Therefore, these lakes can only support warm water fish such as bass and pike. Lakes that fall between these two extremes are called mesotrophic lakes.

Under natural conditions, most lakes will ultimately evolve to a eutrophic state as they gradually fill with sediment and organic matter transported to the lake from the surrounding watershed. As the lake becomes shallower, the process accelerates. When aquatic plants become abundant, the lake slowly begins to fill in as sediment and decaying plant matter accumulate on the lake bottom. Eventually, terrestrial plants become established and the lake is transformed to a marshland. The aging process in lakes is called "eutrophication" and may take anywhere from a few hundred to several thousand years, generally depending on the size of the lake and its watershed. The natural lake aging process can be greatly accelerated if excessive amounts of sediment and nutrients (which stimulate aquatic plant growth) enter the lake from the surrounding watershed. Because these added inputs are usually associated with human activity, this accelerated lake aging process is often referred to as "cultural eutrophication." The problem of cultural eutrophication can be managed by identifying sources of sediment and nutrient loading (i.e., inputs) to the lake and developing strategies to halt or slow the inputs. Thus, in developing a management plan, it is necessary to determine the limnological (i.e., the physical, chemical, and biological) condition of the lake and the physical characteristics of the watershed as well.

Key parameters used to evaluate the limnological condition of a lake include temperature, dissolved oxygen, total phosphorus, chlorophyll-a, and Secchi transparency. A brief description of these water quality measurements is provided as an introduction for the reader. Particular attention should be given to the interrelationship of these water quality measurements.
TEMPERATURE

Temperature is important in determining the type of organisms that may live in a lake. For example, trout prefer temperatures below 68°F. Temperature also determines how water mixes in a lake. As the ice cover breaks up on a lake in the spring, the water temperature becomes uniform from the surface to the bottom. This period is referred to as "spring turnover" because water mixes throughout the entire water column. As the surface waters warm, they are underlain by a colder, more dense strata of water. This process is called thermal stratification. Once thermal stratification occurs, there is little mixing of the warm surface waters with the cooler bottom waters. The transition layer that separates these layers is referred to as the "thermocline." The thermocline is characterized as the zone where temperature drops rapidly with depth. As fall approaches, the warm surface waters begin to cool and become more dense. Eventually, the surface temperature drops to a point that allows the lake to undergo complete mixing. This period is referred to as "fall turnover." As the season progresses and ice begins to form on the lake, the lake may stratify again. However, during winter stratification, the surface waters (at or near 32°F) are underlain by slightly warmer water (about 39°F). This is sometimes referred to as "inverse stratification" and occurs because water is most dense at a temperature of about 39°F. As the lake ice melts in the spring, these stratification cycles are repeated. Shallow lakes do not stratify. Lakes that are 15 to 30 feet deep may stratify and destratify with storm events several times during the year.

DISSOLVED OXYGEN

An important factor influencing lake water quality is the quantity of dissolved oxygen in the water column. The major inputs of dissolved oxygen to lakes are the atmosphere and photosynthetic activity by aquatic plants. An oxygen level of about 5 mg/L (milligrams per liter, or parts per million) is required to support warm water fish. In lakes deep enough to exhibit thermal stratification, oxygen levels are often reduced or depleted below the thermocline once the lake has stratified. This is because deep water is cut off from plant photosynthesis and the atmosphere, and oxygen is consumed by bacteria that use oxygen as they decompose organic matter (plant and animal remains) at the bottom of the lake. Bottom-water oxygen depletion is a common occurrence in eutrophic and some mesotrophic lakes. Thus, eutrophic and most mesotrophic lakes cannot support cold water fish because the cool, deep water (that the fish require to live) does not contain sufficient oxygen.
LAKE WATER QUALITY

PHOSPHORUS

The quantity of phosphorus present in the water column is especially important since phosphorus is the nutrient that most often controls aquatic plant growth and the rate at which a lake ages and becomes more eutrophic. In the presence of oxygen, lake sediments act as a phosphorus trap, retaining phosphorus and, thus, making it unavailable for aquatic plant growth. However, if bottom-water oxygen is depleted, phosphorus will be released from the sediments and may be available to promote aquatic plant growth. In some lakes, the internal release of phosphorus from the bottom sediments is the primary source of phosphorus loading (or input).

By reducing the amount of phosphorus in a lake, it may be possible to control the amount of aquatic plant growth. In general, lakes with a phosphorus concentration greater than 20 µg/L (micrograms per liter, or parts per billion) are able to support abundant plant growth and are classified as nutrient-enriched or eutrophic.

CHLOROPHYLL-a

Chlorophyll-a is a pigment that imparts the green color to plants and algae. A rough estimate of the quantity of algae present in lake water can be made by measuring the amount of chlorophyll-a in the water column. A chlorophyll-a concentration greater than 6 µg/L is considered characteristic of a eutrophic condition.

SECCHI TRANSPARENCY

A Secchi disk is often used to estimate water clarity. The measurement is made by fastening a round, black and white, 8-inch disk to a calibrated line. The disk is lowered over the deepest point of the lake until it is no longer visible, and the depth is noted. The disk is then raised until it reappears. The average between these two depths is the Secchi transparency. Generally, it has been found that aquatic plants can grow at a depth of approximately twice the Secchi transparency measurement. In eutrophic lakes, water clarity is often reduced by algae growth in the water column, and Secchi disk readings of 7.5 feet or less are common. Ordinarily, as phosphorus inputs (both internal and external) to a lake increase, the amount of algae the lake can support will also increase. Thus, the lake will exhibit increased chlorophyll-a levels and decreased transparency. A summary of lake classification criteria developed by the Michigan Department of Environmental Quality is shown in Table 2.

<table>
<thead>
<tr>
<th>Lake Classification</th>
<th>Total Phosphorus (µg/L)</th>
<th>Chlorophyll-a (µg/L)</th>
<th>Secchi Transparency (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligotrophic</td>
<td>Less than 10</td>
<td>Less than 2.2</td>
<td>Greater than 15.0</td>
</tr>
<tr>
<td>Mesotrophic</td>
<td>10 to 20</td>
<td>2.2 to 6.0</td>
<td>7.5 to 15.0</td>
</tr>
<tr>
<td>Eutrophic</td>
<td>Greater than 20</td>
<td>Greater than 6.0</td>
<td>Less than 7.5</td>
</tr>
</tbody>
</table>

1 µg/L = micrograms per liter = parts per billion.
In order to evaluate water quality conditions in Fair Lake, data from the Cooperative Lakes Monitoring Program (CLMP) was reviewed (Table 3). The CLMP is a program where the Department of Environmental Quality provides training, technical support, and quality control to lake residents who collect water quality samples to monitor their lake.

### Table 3
**Fair Lake**

**Cooperative Lakes Monitoring Program Data**

<table>
<thead>
<tr>
<th>Year</th>
<th>Spring</th>
<th>Summer</th>
<th>Mean</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug.</th>
<th>Sept.</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>9.5</td>
<td>9.7</td>
</tr>
<tr>
<td>2000</td>
<td>9</td>
<td></td>
<td>2</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>10.5</td>
<td>10.2</td>
</tr>
<tr>
<td>2001</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>14</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>11.1</td>
<td>11.0</td>
</tr>
<tr>
<td>2002</td>
<td>5</td>
<td></td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>11.0</td>
<td>10.8</td>
</tr>
<tr>
<td>2003</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11.0</td>
<td>12.8</td>
</tr>
<tr>
<td>2004</td>
<td>13</td>
<td></td>
<td>3</td>
<td>&lt;1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>10.3</td>
<td>9.5</td>
</tr>
</tbody>
</table>

In the CLMP, total phosphorus samples are collected at the lake surface only; samples are not collected from any depths below the surface. During the period of spring turnover when the lake is mixing from top to bottom, it is reasonable to expect that samples collected at the surface will represent water quality throughout the entire lake. During summer stratification, however, samples collected at the surface only represent the uppermost 5 to 10 feet of water at the lake’s surface. The CLMP data for Fair Lake shows that total phosphorus is generally low throughout the lake in spring as well as at the surface in summer. With low nutrient levels, plant and algae growth in Fair Lake would be expected to be low to moderate, which was generally the case as shown in the CLMP data; most chlorophyll-a samples were between 2 and 6 parts per billion. Similarly, Secchi transparency indicates water clarity is also moderate in Fair Lake. Based on the CLMP data collected from 1999 through 2004, Fair Lake would be classified as mesotrophic.

---

1 µg/L = micrograms per liter = parts per billion.
Environmental Carrying Capacity

Lakes have a limited ability to sustain pollution inputs. Eventually the pollution input, or load, becomes so large that water quality in the lake begins to decline. The ability of a lake to withstand pollution inputs is a function of several variables including lake size and depth, flushing rate, and water chemistry. In general, lakes in highly urbanized areas that receive large inputs of pollutants from their watersheds tend to be of poorer quality than lakes in less urbanized watersheds. In this section of the report, an estimate is made of the potential pollution load being transported to Fair Lake, and the lake’s response to this load is evaluated to gauge the sensitivity of the lake to future development pressures.

THE FAIR LAKE WATERSHED

For the most part, residential development in the Fair Lake watershed is concentrated in close proximity to the lake. Much of this residential development has occurred on relatively small lots that directly abut the lake. Concentrated development of this nature can be problematic in that it increases the amount of imperviousness (i.e., hard surfaces such as roof tops, roads, driveways) and allows water to run directly into the lake. Often, runoff from residential areas contains fertilizers, oil, and grease residues that can significantly degrade water quality. A major potential source of pollution input to Fair Lake was eliminated with the construction of a sanitary sewer around the lake.

Much of the Fair Lake watershed is farmland. In many cases, runoff from agricultural lands contains fertilizer residues and other pollutants. However, in the Fair Lake watershed, there are several factors that mitigate the impact of agricultural activities. Soils in the agricultural portions of the Fair Lake watershed consist primarily of Oshtemo sandy loams with smaller areas of Spinks loamy sands, Kalamazoo loams, Boyer loamy sand and Marlette-Oshtemo complex (U.S. Department of Agriculture Soil Conservation Service). These soil types tend to be moderately to highly permeable and well-drained. Thus, water tends to infiltrate into the ground after rain events rather than draining directly to Fair Lake. Also, many of the agricultural lands in the watershed are separated from the lake by wetland and/or wooded areas. These natural areas filter agricultural fertilizers and other potential contaminants and prevent them from washing directly to the lake.

Approximately 23 percent of the Fair Lake watershed is wetland. In addition to providing fish and wildlife habitat, wetlands in the Fair Lake watershed afford a number of important benefits and functions including pollution prevention, flood control, and groundwater recharge. Preservation of these wetlands is vital to maintaining the quality of Fair Lake. To facilitate identification of the generalized location of wetlands within the Fair Lake watershed, a composite wetland map was created by combining information on hydric (i.e., muck type) soils provided by the U.S. Department of Agriculture, U.S. Fish and Wildlife Service National Wetland Inventory maps, and Michigan Resource Information System (MIRIS) land use/cover data (Figure 6).
Figure 6. Fair Lake watershed wetland map.
Another factor that influences the sensitivity of a lake to pollution loading is its water residence time (sometimes referred to as the flushing rate). Water residence time is the time it takes the volume of water in a lake to be replaced by incoming water. In general, lakes that are flushed periodically by good quality water will tend to recover more quickly from pollution inputs than lakes with long water residence times. Fair Lake does not have a significant inflow of water. The lake is fed by surface runoff, direct precipitation on the lake surface, and groundwater springs. The estimated water residence time for Fair Lake is approximately 10 months.

THE IMPORTANCE OF PHOSPHORUS

Phosphorus is the nutrient that most often stimulates excessive growth of aquatic plants and algae, leading to a variety of problems collectively known as eutrophication (Figure 7). Of the major nutrient pollutants, phosphorus is most amenable to control through management practices. For these reasons, the environmental carrying capacity analysis of Fair Lake focuses on sources of phosphorus loading to the lake.

ENVIRONMENTAL CARRYING CAPACITY CALCULATIONS

Since it is extremely difficult and cost-prohibitive to directly measure nonpoint, diffuse sources of phosphorus loading such as surface runoff and atmospheric deposition, it was necessary to select phosphorus loading values from other studies in which direct measurements have been made in the field. Care was taken to apply phosphorus loading values that would be representative of the watershed conditions observed around Fair Lake. The values selected were based largely on a comprehensive literature review of the quantity of phosphorus transported to surface water bodies from various land uses (Reckhow et al. 1980) and from previous phosphorus budget analyses of Gull Lake (Tague 1977 and Tessier 1995). Phosphorus loading values selected for Fair Lake are summarized in Table 4. In this analysis, four land use classifications were utilized: Agricultural, urban, forested/open, and wetland. The estimated total phosphorus load to Fair Lake is presented in Table 4 and graphically shown in Figure 8.

<table>
<thead>
<tr>
<th>Source</th>
<th>Area (acre)</th>
<th>Phosphorus Loading Values (lbs/acre/yr)</th>
<th>Phosphorus Load (lbs/yr)</th>
<th>Percent of Total Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>426</td>
<td>0.4</td>
<td>170</td>
<td>60%</td>
</tr>
<tr>
<td>Urban</td>
<td>78</td>
<td>0.8</td>
<td>62</td>
<td>22%</td>
</tr>
<tr>
<td>Forested and Open</td>
<td>283</td>
<td>0.05</td>
<td>14</td>
<td>5%</td>
</tr>
<tr>
<td>Wetland</td>
<td>241</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Atmospheric</td>
<td>226</td>
<td>0.165</td>
<td>37</td>
<td>13%</td>
</tr>
<tr>
<td>Total</td>
<td>284</td>
<td></td>
<td>221</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure 7. Phosphorus loading determinants and lake responses.
Various researchers have studied the impact of phosphorus loading on lake water quality, and many have developed techniques for predicting lake trophic status under different phosphorus loading scenarios (Reckhow et al. 1980; Dillon and Rigler 1975; Vollenweider 1975). Reckhow et al. (1980) developed a model for northern temperate lakes (such as Fair Lake) that can be used to predict a lake's average phosphorus concentration as a function of phosphorus loading and lake flushing rate. The model equation is:

\[ P = \frac{L}{11.6 + 1.2q_s} \]

where:
- \( P \) = Lake phosphorus concentration (in parts per billion)
- \( L \) = Surface area phosphorus loading (in grams per square meter-year)
- \( M \) = Total mass loading (in kilograms per year)
- \( A_0 \) = Lake surface area (in square meters)
- \( q_s \) = Surface area water loading (in meters per year)
- \( Q \) = Inflow water volume to lake (in cubic meters per year)
- \( A_d \) = Watershed area, excluding the lake (in square meters)
- \( r \) = Total annual unit runoff (in meters per year)
- \( Pr \) = Mean annual net precipitation (in meters per year)

By applying this modeling methodology to Fair Lake, it is possible to estimate the in-lake total phosphorus concentration based on current conditions. For Fair Lake, the model predicts an in-lake phosphorus concentration of 10 parts per billion which is consistent with historical measurements of phosphorus levels in the lake.
Conclusions and Recommendations

The installation of a sewer system around Fair Lake in the 1990's eliminated a major potential source of pollution to the lake. Currently, the Fair Lake watershed contains sufficient wetlands, forested areas, and undeveloped lands to help protect the lake, and Fair Lake exhibits good water quality. However, excessive or improper development of these areas could result in a significant increase in phosphorus loading and degradation of water quality. The following recommendations are designed to help preserve the environmental quality of Fair Lake over the long term.

WETLAND PROTECTION

As previously noted, wetlands in the Fair Lake watershed provide several valuable functions including pollution prevention, flood control, and groundwater recharge as well as fish and wildlife habitat. Protecting these wetlands from excessive encroachment will help to protect the quality of the lake.

According to the Fish and Wildlife Service, over half of wetlands in Michigan have been lost through piece-meal and wholesale destruction. In recognition of the huge economic losses that were resulting from the destruction of wetlands, nationwide wetland protection regulations were incorporated into the Federal Clean Water Act of 1972. In 1980, Michigan enacted its own law regulating development of wetlands consistent with federally mandated wetland protection efforts. Michigan's wetland protection regulations are contained within Part 303 (Wetlands Protection) of the Natural Resources and Environmental Protection Act. Under Part 303, wetlands are defined as follows:

"Wetland" means land characterized by the presence of water at a frequency and duration sufficient to support and that under normal circumstances does support wetland vegetation or aquatic life and is commonly referred to as a bog, swamp, or marsh.

Wetlands which meet any of the following criteria are regulated by the Michigan Department of Environmental Quality:

- Wetlands which have direct physical contact or a permanent or intermittent surface water connection to a lake, pond, river, or stream.
- Wetlands which are located partially or entirely within 500 feet of a lake, pond, river, or stream (or within 1,000 feet of one of the Great Lakes).

In counties with population greater than 100,000 (such as Kalamazoo County), noncontiguous wetlands (i.e., wetlands not bordering or within 500 feet of a lake, pond, or stream) greater than 5 acres in size are also regulated. In counties with a population less than 100,000 (such as Barry County), noncontiguous wetlands greater than 5 acres are not regulated until the MDEQ completes a wetland inventory for that county and has notified affected landowners. Regardless of population, noncontiguous wetlands 5 acres or less in size are generally not regulated by the state. Based on these criteria, many of the wetlands in the Fair Lake watershed are regulated by the MDEQ.

In accordance with Part 303, the following activities require a permit from the Department of Environmental Quality (MDEQ):

- Deposit or permit the placing of fill material in a wetland;
- Dredge, remove, or permit the removal of soil or minerals from a wetland;
CONCLUSIONS AND RECOMMENDATIONS

- Construct, operate, or maintain any use or development in a wetland; and
- Drain surface water from a wetland. Certain activities, such as fishing, trapping and hunting, grazing of animals, certain farming activities, and harvesting of lumber are exempt from permit requirements.

Part 303 requires that the Department of Environmental Quality not issue a wetland permit unless the applicant shows either of the following:

a) The proposed activity is primarily dependent on being located in a wetland.

b) A feasible and prudent alternative does not exist.

To date, an official wetland inventory for the Fair Lake area has not been completed by the state. Until an official wetland map is available, the wetland map presented herein (Figure 6) should be used as a guide to identify the generalized location of wetlands in the watershed. This map can help property owners and developers identify wetland locations in advance of the formulation of development proposals, thereby avoiding wetland impacts and potential conflicts. Lake residents should monitor development in the watershed to ensure encroachment into area wetlands does not occur.

KEYHOLE OR FUNNEL DEVELOPMENT CONTROL ORDINANCES

Of primary concern on Fair Lake is the issue of keyhole or funnel development. Funneling occurs when a waterfront lot is used to permit access to a larger development located away from the lake (Figure 9). Funneling allows a large number of individuals to gain access to the lake through a small corridor of lake property, thereby exceeding the natural limitation on access afforded by the existing shoreline. Unregulated funnel development has the potential to create a number of problems including land use conflicts, unsafe and inadequate access, boating accidents, noise, lake congestion, multi-use conflicts, and decreased property values. In addition, a substantial increase in boating activity on Fair Lake could cause resuspension of bottom sediments, shoreline erosion, destruction of fishery and wildlife habitat, and diminished water quality. Without proper controls, keyhole development would also tend to concentrate development in close proximity to the lakeshore which would increase the amount of imperviousness and storm water runoff to the lake.

Figure 9. Lake keyhole development.
CONCLUSIONS AND RECOMMENDATIONS

In the early 1990's the Michigan Supreme Court ruled that communities can provide for reasonable regulation of keyhole through zoning. Currently, the zoning ordinance for Barry County has keyhole regulations. With respect to the legal basis for keyholing, a recent court case of special interest is Township of Yankee Springs v Fox. In this case, a Court of Appeals opinion approved for publication on December 21, 2004 upheld a keyholing ordinance that had been challenged on several fronts. This case provides a precedent for future challenges to keyhole ordinances. For informational purposes, a copy of the Court of Appeals decision and the Yankee Springs Township's Riparian Lot Use Regulations are included in Appendix A.

SHORELAND OVERLAY DISTRICT

Excessive development of environmentally sensitive lake shorelands can have direct, adverse water quality impacts including loss of fish and wildlife habitat at the water's edge, increased runoff of fertilizers and other pollutants, and erosion and sedimentation. Recognizing the need to protect shoreland areas, several states (including Maine, Minnesota, and Wisconsin) have adopted state-wide standards to minimize the impacts of shoreland development. Michigan, through the Natural Rivers Program, requires that shoreland development standards be met on several designated rivers including the Pere Marquette, Au Sable, Betsie, Huron, and Lower Kalamazoo. However, there are no state-wide shoreland development standards in Michigan for lakes. Thus, this issue of protection of lake shorelands is left largely to local units of government and waterfront property owners.

One way that shoreland protection can be accomplished at the local level is through the creation of an overlay district within a township’s zoning ordinance. An overlay district is a zoning district that applies to a specific geographic area, such as a lake shoreland or a stream corridor. In an overlay district, proposed developments must meet all the conditions of the underlying district in addition to the provisions set forth in the overlay district. A shoreland overlay district could require building setbacks, shoreline vegetative buffers, limits on imperviousness, and prohibit specific uses and activities that could be detrimental to water quality, such as gas stations and confined feedlots. Sample language for a shoreland overlay district is included in Appendix B.

OPEN SPACE DEVELOPMENT

An approach that is gaining acceptance in communities across the state is a zoning technique called "open space (cluster) development." With this approach, the base density for a zoning district does not increase (although in some cases density bonuses are given for additional preservation of open space). Open space development typically allows the same number of homes to be built, but they are clustered on a smaller portion of the development site, thus preserving more undeveloped land. With open space development, a site analysis can be required to identify natural features such as wetlands, steeply sloped lands, forested areas, stream corridors, lake shorelands, and rural views. These natural features can constitute part or all of the designated "open space" portions of the development site. Development is then clustered in appropriate locations on the site and the designated open space elements are protected in perpetuity, typically through a deed restriction or conservation easement.

Properly designed open space developments can provide the following water quality benefits:

- Clustering development can minimize impervious surfaces by shortening road lengths;
- If wetlands and forested areas are preserved as "open space elements," the natural ability of these areas to filter and trap pollutants is not lost;
- Development of erosion-prone areas (such as steeply-sloped forest lands) can be avoided;
- The land's natural ability to convey and cleanse stormwaters can be preserved; and
- The natural infiltration of stormwaters can be sustained.
CONCLUSIONS AND RECOMMENDATIONS

In essence, a properly designed open space development can help to protect the functional integrity of the land with respect to the natural conveyance or infiltration of stormwater.

Additional benefits of open space development include:

- Permanent protection of open areas and natural features without restricting property rights;
- Rural character preservation;
- Cost savings to property owners due to less infrastructure construction and maintenance;
- Development potential of the site is not limited;
- No large public expenditures are required for land acquisition; and
- May create continuity of “greenway” open space for wildlife migration and movement.

Barry County has open space development provisions within its zoning ordinance. If, in the future, development is proposed within the Fair Lake watershed, the open space alternative may help to minimize potential adverse water quality impacts.

LOW IMPACT DEVELOPMENT

As urbanization increases in a community, natural vegetative cover is replaced by rooftops, roadways, parking lots, and other impervious surfaces. The increase in impervious area greatly increases the rate and volume of runoff and decreases water infiltration into the ground (Figure 10). With an increase in the quantity of runoff, a concurrent increase in the quantity of pollutants transported generally occurs as well. The “first flush” of stormwater runoff often contains high concentrations of oil and grease residues, nutrients, sediment, trace metals, fecal bacteria, oxygen-consuming wastes, and a variety of other contaminants. These pollutants can cause siltation, nutrient enrichment (and accelerated eutrophication), bacterial contamination, and severe degradation of water resources.

A method of managing stormwater that is gaining prominence and acceptance is a concept called Low Impact Development or LID. In The Practice of Low Impact Development (NAHB Research Center, Inc. 2003), LID is defined as an approach to land development that uses various land planning and design practices and technologies to simultaneously conserve and protect natural resource systems and reduce infrastructure costs. LID still allows land to be developed, but in a cost-effective manner that helps mitigate potential environmental impacts. Essentially, LID’s are designed to maintain the natural hydrological cycle by:

Figure 10. Increased imperviousness and runoff.
CONCLUSIONS AND RECOMMENDATIONS

- Preserving open space and minimizing land disturbances;
- Protecting natural features and natural processes;
- Reexamining the use and sizing of traditional infrastructure (lots, streets, curbs, gutters, sidewalks) and customizing site design;
- Integrating natural site elements (wetlands, stream corridors, mature forests) into site designs; and
- Decentralizing and managing stormwater at its source.

With an LID, the development process includes a detailed site analysis that identifies natural drainage patterns and key natural features such as forested areas, wetlands, stream corridors, steeply sloped areas, and soil types. This information is then used to help define development opportunities and constraints and areas requiring protection. The site analysis is followed by an evaluation of alternatives to minimize development impacts. Alternatives to accomplish these objectives could include minimizing clearing and grading, reducing impervious surfaces, clustering development, limiting lot disturbance, and preserving permeable soil types. An attempt is then made to slow the conveyance of stormwater from the site by dispersing (rather than concentrating) drainage, maintaining natural flow paths, and by using vegetated swales to convey water (as opposed to pipes). A key element of an LID is to treat stormwater at its source, rather than conveying water to a centralized stormwater basin (Figure 11). The overall goal of stormwater management in an LID is to mimic pre-development hydrologic conditions.

In The Practice of Low Impact Development (NAHB Research Center, Inc. 2003), it is noted that developers who have used LID practices and technologies have indicated that one of the keys to a successful project is to invest additional time and money in the initial planning stages of development. While this idea

![Figure 11. Low impact development lot level source controls.](image-url)
may be unpopular because of increased up-front costs, the expenditures are often recouped in the form of rapid home sales, enhanced community marketability, and higher lot yields.

**INFORMATION AND EDUCATION**

For the most part, development in the Fair Lake watershed is concentrated in the shorelands immediately adjacent to the lake. If not properly managed, pollutants from these shoreland areas can run directly to the lake. Phosphorus loading from these sources could be significantly reduced if lake residents establish vegetative buffer strips (i.e., a greenbelt) along the water's edge (Figure 12) and curtail the use of fertilizers containing phosphorus. Specific recommendations on lakeside landscaping are contained in Appendix C.

Given the sensitivity of Fair Lake to increased phosphorus loadings, future development in the Fair Lake watershed must be planned and designed to minimize water quality impacts. Of primary concern will be the protection of natural features (such as wetlands, forested lands, and natural drainage areas). The management recommendations presented herein are designed to provide a basis and framework for future decision making.

![Figure 12. Lakeside vegetative buffer or greenbelt.](image)
Appendix A
Michigan Court of Appeals Decision and Riparian Lot Use Regulations
STATE OF MICHIGAN  
COURT OF APPEALS

TOWNSHIP OF YANKEE SPRINGS,  
Plaintiff-Appellee,

v

RICHARD FOX,  
Defendant-Appellant,

and

ANTONIO VELOSO, NINA VELOSO, EDWIN HARTMAN, MRS. EDWIN HARTMAN, TODD GREENMAN, RACHEL GREENMAN, ROGER G. TRUCKENMILLER, TRISHA J. TRUCKENMILLER, JAMES S. SWANSON, LINDA J. SWANSON, MIKE BEDFORD, RON HEETHUIS, JOHN ROUGH and LINDA ROUGH,

Defendants.

Before: Fort Hood, P.J., and Donofrio and Borrello, JJ.

PER CURIAM.

Defendant Richard Fox, as an owner of an undivided one-eighth interest in 2620 First Street (the First Street lot), a riparian lot on Gun Lake previously owned by defendants John and Linda Rough, appeals as of right from the trial court order permanently enjoining defendant and several other First Street lot owners from using the First Street lot to access Gun Lake in violation of the plaintiff Yankee Springs Township's antifunneling ordinance found within its riparian-lot-use regulations. We affirm.

Defendant first argues that the plaintiff’s riparian ordinance does not apply to Gun Lake because the lake is not wholly located within the plaintiff’s borders. We disagree. We review the trial court's interpretation of the township zoning ordinance de novo. Brandon Charter Twp v Tippett, 241 Mich App 417, 421; 616 NW2d 243 (2000).
In *Hess v West Bloomfield Twp*, 439 Mich 550, 562; 486 NW2d 628 (1992), our Supreme Court held that riparian rights are derived from land. Thus, it is the location of the riparian land, and not the location of the lake that abuts the land, that determines the plaintiff’s authority and jurisdiction in this case. Further, the Township Zoning Act, MCL 125.271 *et seq.*, "permits townships to regulate riparian rights, such as dockage of boats, as part of their zoning power." *Hess, supra* at 565-566. Therefore, because the riparian lot at issue is located within plaintiff’s boundaries and because plaintiff is authorized by statute to regulate riparian rights, plaintiff has the authority to regulate defendant's riparian rights in this case.

Defendant next contends that the riparian-lot-use regulations are void for vagueness because the regulations do not provide fair notice of the conduct proscribed. We review the constitutionality of this ordinance de novo. *Jott, Inc v Clinton Charter Twp*, 224 Mich App 513, 525; 569 NW2d 841 (1997).

A statute or ordinance may be void for vagueness if (1) it is overbroad and impinges on First Amendment freedoms, (2) it does not provide fair notice of the conduct it regulates, or (3) it gives the trier of fact unstructured and unlimited discretion in determining whether the statute has been violated. *Dep't of State v Michigan Ed Ass'n-NEA*, 251 Mich App 110, 116; 650 NW2d 120 (2002). Because defendant's void-for-vagueness challenge is limited to the argument that the ordinance does not provide fair notice of the conduct proscribed, we must examine the constitutionality of the ordinance "without concern for the hypothetical rights of others." *People v Knapp*, 244 Mich App 361, 374 n 4; 624 NW2d 227 (2001), quoting *People v Vronko*, 228 Mich App 649, 652; 579 NW2d 138 (1998). Thus, "[t]he proper inquiry is not whether the [ordinance] may be susceptible to impermissible interpretations, but whether the [ordinance] is vague as applied to the conduct allegedly proscribed in this case." *Knapp, supra* at 374 n 4, quoting *Vronko, supra* at 652.

The relevant section of the plaintiff's zoning ordinance concerning riparian-lot-use regulations provides as follows:

In any zoning district where a parcel of land is contiguous to a lake or pond, either natural or man-made, such parcel of land may be used as access property or as common open space held in common by a subdivision, association or any similar agency; or held in common by virtue of the terms of a plat of record; or provided for common use under deed restrictions of record; or owned by two or more dwelling units located away from the waterfront only if the following conditions are met:

1. That said parcel of land shall contain at least 70 lineal feet of water frontage and a lot depth of at least 100 feet for each dwelling unit or each single-family unit to which such privileges are extended or dedicated. . . . [Section 15.14.2.]

Defendant argues that, under one permissible interpretation, the various types of ownership listed in the introductory paragraph of this section can be interpreted as modifying both "access property" and "common open space." According to defendant, if such an interpretation is adopted, the lot owners are not in violation of the ordinance because the First Street lot does not constitute access property "owned by two or more dwelling units located away
from the waterfront." Defendant further contends that one can also interpret the types of ownership listed in the introductory paragraph as modifying only "common open space." Under the second interpretation, defendant would be in violation of the ordinance because the First Street lot qualifies as access property.

Under the rules of grammar and statutory construction, which apply to ordinances, *Gora v City of Ferndale*, 456 Mich 704, 711; 576 NW2d 141 (1998), if reasonable minds can differ with respect to the meaning of a statute, judicial construction is appropriate. *Adrian School Dist v Michigan Pub School Employees' Retirement Sys*, 458 Mich 326, 332; 582 NW2d 767 (1998). However, we believe that reasonable minds could not disagree regarding the meaning of the ordinance.

The disjunctive term "or" refers to a choice or alternative between two or more things. *Root v Ins Co of North America*, 214 Mich App 106, 109; 542 NW2d 318 (1995). Accordingly, applying basic grammar rules and rules of statutory construction, the introductory paragraph set forth in § 15.14.2 of the zoning ordinance can only correctly be interpreted in one way. Consequently, there can be no question that for a parcel of land to be used as access property, it must comply with the conditions listed in § 15.14.2, including:

1. That said parcel of land shall contain at least 70 lineal feet of water frontage and a lot depth of at least 100 feet for each dwelling unit or each single-family unit to which such privileges are extended or dedicated. Frontage shall be measured by a straight line which intersects each side lot line at the water's edge.

At least eight families with nonwaterfront dwellings own one-eighth interests in the First Street lot. Because the lot has only 103 feet of water frontage, the riparian-lot-use regulations prohibit the use of the lot as access property. Thus, we find that the ordinance was not void for vagueness.

Defendant next argues that the ordinance is unconstitutional because it denies him substantive due process. We disagree.

As stated previously, we review the trial court's ruling on a constitutional challenge to a zoning ordinance de novo. *Jott, supra* at 525. Judicial review of a challenge to an ordinance on substantive due process grounds requires application of three rules:

(1) the ordinance is presumed valid; (2) the challenger has the burden of proving that the ordinance is an arbitrary and unreasonable restriction upon the owner's use of the property; that the provision in question is an arbitrary fiat, a whimsical ipse dixit; and that there is not room for a legitimate difference of opinion concerning its reasonableness; and (3) the reviewing court gives considerable weight to the findings of the trial judge. [*A & B Enterprises v Madison Twp*, 197 Mich App 160, 162; 494 NW2d 761 (1992).]

To establish that a zoning ordinance violates substantive due process protections, a party must show (1) that there is no reasonable governmental interest advanced by the zoning classification or (2) that the ordinance is unreasonable because it contains arbitrary, capricious

The 1987 antifunneling ordinance in question explains the problems that led to its adoption, including overcrowding and pollution of lakes and other waterways, as well as the dangers to life and property posed by an increased risk of boating accidents. Likewise, the expressed intent of the riparian-lot-use regulations is that the regulations are designed to prevent funnel development and to protect and preserve lakes.

The protection of natural resources such as lakes is a reasonable governmental interest. In *Hess*, our Supreme Court stated that the Legislature, in granting townships the authority to promote public health, safety, and general welfare by enacting zoning ordinances, was complying with its "constitutional mandate to protect the environment, including bodies of water, from impairment or destruction." *Hess*, *supra* at 565. Protecting Gun Lake from congestion and pollution and protecting the public from the risk of increased boating accidents promotes public health, safety, and welfare. The goals of the ordinance are reasonable governmental interests that state law expressly permits townships to regulate. Further, limiting the number of dwelling units given access to riparian lots will curtail funneling, or lake access by nonriparian lot owners. Thus, the ordinance is rationally related to its stated purpose.

Furthermore, the ordinance is not unreasonable as an arbitrary and capricious exclusion of legitimate uses of land. We find a rational relationship between the ordinance and its objective. Limiting the number of dwelling units with lake access to one for every seventy feet of lakefront property would curtail lake congestion, pollution, and the risk of boating accidents by cutting down on overuse. The fact that the ordinance does not seek to regulate public lake access does not make it arbitrary or capricious. Likewise, the fact that the ordinance does not regulate all types of access does not mean it is not rationally related to its goals of reducing lake congestion, lowering the risk of accidents on the lake, and preserving the lake. On the contrary, the riparian regulations at issue limit overuse by cutting down on the private use of the lakefront by owners of nonwaterfront property. Thus, the regulations are neither arbitrary nor capricious.

Plaintiff’s failure to similarly regulate the use of state-licensed marinas or planned unit developments or to coordinate its riparian ordinance with ordinances of other townships surrounding the lake does not render the ordinance arbitrary and capricious. As our Supreme Court has cautioned:

[I]t is the burden of the party attacking to prove affirmatively that the ordinance is an arbitrary and unreasonable restriction upon the owner's use of his property. . . . It must appear that the clause attacked is an arbitrary fiat, a whimsical *ipse dixit*, and that there is no room for a legitimate difference of opinion concerning its reasonableness. [*Brae Burn, Inc v Bloomfield Hills*, 350 Mich 425, 432; 86 NW2d 166 (1957).]

Here defendant has not shown that there is no room for a difference of opinion on the reasonableness of the ordinance. Again, the mere fact that the ordinance does not regulate all types of lakefront access, but only regulates lakefront access of residential riparian lots, does not lead to the conclusion that the ordinance is an arbitrary one. The ordinance's riparian-lot-use regulations apply uniformly to all residential riparian lots, and not just to defendant's lot. We
therefore conclude that the ordinance is not an arbitrary restriction on defendant's use of his property.

Defendant finally argues that the trial court erred in finding that plaintiff’s claim was not barred by the equitable affirmative defense of laches. We disagree. We review a trial court's equitable decisions de novo. *Webb v Smith (After Second Remand)*, 224 Mich App 203, 210; 568 NW2d 378 (1997). We review for clear error the findings of fact supporting the trial court's equitable decision. *Id.*

The doctrine of laches is concerned with unreasonable delay that results in "circumstances that would render inequitable any grant of relief to the dilatory plaintiff." *In re Contempt of United Stationers Supply Co*, 239 Mich App 496, 503-504; 608 NW2d 105 (2000). The application of the doctrine of laches requires the passage of time combined with a change in condition that would make it inequitable to enforce the claim against the defendant. *Gallagher v Keefe*, 232 Mich App 363, 369; 591 NW2d 297 (1998). Laches does not apply unless the delay of one party has resulted in prejudice to the other party. *City of Troy v Papadelis (On Remand)*, 226 Mich App 90, 97; 572 NW2d 246 (1997). "'It is the effect, rather than the fact, of the passage of time that may trigger the defense of laches.'" *Id.*, quoting *Great Lakes Gas Transmission Co v MacDonald*, 193 Mich App 571, 578; 485 NW2d 129 (1992). The defendant has the burden of proving that the plaintiff's lack of due diligence resulted in some prejudice to the defendant. *Gallagher, supra* at 369-370. Laches can be applied to bar an attempt to abate a zoning ordinance violation. *Independence Twp v Skibowski*, 136 Mich App 178, 185; 355 NW2d 903 (1984).

Defendant presented testimony that plaintiff knew of John Rough's plan to sell undivided one-eighth interests in his riparian lot to provide nonriparian lot owners with private lakefront access as early as 1994, as evidenced by the fact that the plaintiff's assessor and supervisor warned Rough at that time that his actions violated the plaintiff's antifunneling ordinance. According to defendant, plaintiff, despite knowing of Rough's plan in 1994, failed to initiate its action to enforce the antifunneling ordinance until March 2002 and, therefore, failed to exercise due diligence in bringing its action against defendant.

On June 4, 1997, Rough filed an affidavit with the Barry County Register of Deeds acknowledging that he was aware of the existence of an antifunneling ordinance before he pursued his plan to convey undivided interests in the First Street lot for lakefront access. The trial court, relying on the fact that Rough's affidavit was recorded in 1997, concluded that defendant and the other First Street lot owners had constructive notice that plaintiff had an antifunneling ordinance before they purchased their interests in the First Street lot. Therefore, according to the trial court, defendant was not prejudiced by plaintiff's delay in initiating its action.

Defendant contends that constructive notice was insufficient to permit the conclusion that defendant was not prejudiced by plaintiff’s dilatory tactics. In *Larzelere v Starkweather*, 38 Mich 96, 107 (1878), our Supreme Court stated:

There are cases which go very far in extending the doctrine of laches in applying the rule of constructive notice. We think, however, the better and certainly the safer rule to be that a mere want of caution is not sufficient,——not
that [a party] had incautiously neglected to make inquiries, but that he had
designedly abstained from making inquiry for the very purpose of avoiding
knowledge. In other words, that he acted in bad faith.

To the extent that this language can be interpreted as suggesting that constructive notice
is insufficient when applying the doctrine of laches, we conclude that it is inapplicable because it
speaks to a set of facts not present in this case.\footnote{Moreover, we observe that in \textit{Larzelere}, our Supreme Court recognized that, notwithstanding
the doctrine of \textit{stare decisis}, a rule of law from a case that is factually distinguishable may not be
binding on a different set of facts:}

\textit{In the preparation of an opinion, the facts of the case are in mind. It is
prepared with reference to such facts, and when considered in connection
therewith, will generally be found satisfactory. When, however, an attempt is
made to pick out particular parts or sentences, and apply them indiscriminately in
other cases, nothing but confusion and disaster will be likely to follow. In other
words, the opinion and decision of a court must be read and examined as a whole
in the light of the facts upon which it was based. [\textit{Larzelere, supra} at 101.]}
ARTICLE XVIII
RIPARIAN LOT USE REGULATIONS

15.18.

15.18.1. PURPOSE:
IT IS THE PURPOSE OF THIS ARTICLE TO PROMOTE THE INTEGRITY OF THE LAKES WITHIN YANKEE SPRINGS TOWNSHIP WHILE PRESERVING THE QUALITY OF RECREATIONAL USE OF THE INLAND WATER; TO PROTECT THE QUALITY OF THE LAKES BY DISCOURAGING EXCESSIVE USE; TO PROMOTE THE ECOLOGICAL BALANCE OF THE WATERS BY LIMITING INCOMPATIBLE LAND USE OF THE WETLANDS ASSOCIATED WITH THE LAKES; AND TO MAINTAIN THE NATURAL BEAUTY OF THE LAKES BY MINIMIZING MAN-MADE ADJUSTMENTS TO THE ESTABLISHED SHORELINES.

NOTING WITHIN THIS ORDINANCE SHALL BE CONSTRUED TO LIMIT ACCESS TO THE LAKES OR WATERWAYS BY THE GENERAL PUBLIC BY WAY OF A PUBLIC PARK, OR PUBLIC ACCESS SITE PROVIDED OR MAINTAINED BY ANY UNIT OF STATE, COUNTY OR LOCAL GOVERNMENT.

15.18.2. DEFINITIONS:

"ACCESS PROPERTY"
SHALL MEAN A PROPERTY, PARCEL, OR LOT ABUTTING A LAKE OR POND, EITHER NATURAL OR MAN-MADE, AND USED OR INTENDED TO BE USED, FOR THE PURPOSE OF PROVIDING ACCESS TO A LAKE OR POND BY PEDESTRIAN OR VEHICULAR TRAFFIC TO AND FROM OFFSHORE LAND REGARDLESS OF WHETHER SAID ACCESS TO THE WATER IS GAINED BY EASEMENT, COMMON FEE OWNERSHIP, SINGLE FEE OWNERSHIP, LEASE, LICENSE, GIFT, BUSINESS INVITATION OR ANY OTHER FORM OR DEDICATION OR CONVEYANCE.

"PUBLIC EASEMENT OR ACCESS"
PUBLIC EASEMENT OR ACCESS SHALL MEAN ANY RIGHT OF WAY OR ACCESS ACROSS ANY PARCEL OF LAND FROM A PUBLIC OR PRIVATE ROAD, TO ANY LAKE WITHIN YANKEE SPRINGS TOWNSHIP, DEDICATED BY A DEVELOPER. ALL EASEMENTS CREATED AFTER JULY 14, 1994 SHALL MEET THE REQUIREMENTS OF SECTIONS 15.14.1 THROUGH 15.14.3.

15.18.3. REGULATIONS:
IN ANY ZONING DISTRICT WHERE A PARCEL OF LAND IS CONTIGUOUS TO A LAKE OR OTHER WATERWAY, EITHER NATURAL OR MAN-MADE, SUCH PARCEL OF LAND MAY BE USED AS ACCESS PROPERTY OR AS COMMON OPEN SPACE HELD IN COMMON BY A SUBDIVISION, ASSOCIATION OR SIMILAR AGENCY; OR HELD IN COMMON BY VIRTUE OF THE TERMS OF A PLAT OF RECORD; OR PROVIDED FOR COMMON USE UNDER DEED RESTRICTIONS OF RECORD; OR OWNED BY TWO (2) OR MORE DWELLING UNITS LOCATED AWAY FROM THE WATER FRONT ONLY IF THE FOLLOWING CONDITIONS ARE MET:

A. THAT SAID PARCEL OF LAND SHALL CONTAIN AT LEAST SEVENTY (70) FEET OF WATER FRONTAGE AND A LOT DEPTH OF AT LEAST ONE-HUNDRED (100) FEET FOR EACH DWELLING UNIT OR EACH SINGLE FAMILY UNIT TO WHICH SUCH PRIVILEGES ARE EXTENDED OR DEDICATED. FRONTAGE SHALL BE MEASURED BY A STRAIGHT LINE WHICH INTERSECTS EACH SIDE LOT LINE AT THE WATER’S EDGE.

B. THAT IN NO EVENT SHALL WATER FRONTAGE OF SUCH PARCEL OF LAND CONSIST OF SWAMP, MARSH, OR BOG AS SHOWN ON THE MOST RECENT U.S. GEOLOGICAL SURVEY MAPS, OR THE MICHIGAN DEPARTMENT OF NATURAL RESOURCES MIRIS MAP, OR HAVE OTHERWISE BEEN DETERMINED TO BE WETLAND BY THE MICHIGAN DNR; AND THAT IN
APPENDIX A

NO EVENT SHALL A SWAMP, MARSH, OR BOG BE ALTERED BY THE ADDITION OF EARTH OR FILL MATERIAL OR BY DRAINAGE OF WATER FOR THE PURPOSE OF INCREASING THE WATER FRONTAGE REQUIRED BY THIS ARTICLE.

C. THAT IN NO EVENT SHALL SUCH PARCEL OF LAND ABUT A MAN-MADE CANAL OR CHANNEL, AND NO CANAL OR CHANNEL SHALL BE EXCAVATED FOR THE PURPOSE OF INCREASING THE WATER FRONTAGE REQUIRED BY THIS ARTICLE.

D. THAT ACCESS PROPERTY, AS PROVIDED FOR IN AND MEETING THE CONDITIONS OF THIS ORDINANCE, REGARDLESS OF TOTAL AREA, SHALL NOT BE USED AS A RESIDENTIAL LOT FOR THE PURPOSE OF CONSTRUCTING A DWELLING AND/OR ACCESSORY STRUCTURE(S), OR FOR ANY COMMERCIAL OR BUSINESS USE. SUCH PARCEL OF LAND

15.18.4. USE OF PUBLIC EASEMENTS:

USE OF PUBLIC EASEMENTS BETWEEN PUBLIC OR PRIVATE ROADS AND ANY LAKE IN YANKEE SPRINGS TOWNSHIP. THESE RULES SHALL NOT APPLY TO ANY EASEMENT WITHIN YANKEE SPRINGS TOWNSHIP WHERE A COURT OF LAW AS PREVIOUSLY SET UP OPERATING REGULATIONS.

A. THE USE OF ANY EASEMENT DEDICATED TO THE PUBLIC SHALL NOT BE LIMITED TO ANY GROUP OF RESIDENTS OF THE STATE, COUNTY OR TOWNSHIP EXCEPT AS FOLLOWS:

1. USE SHALL BE BY PEDESTRIAN TRAFFIC ONLY:
   (A). NO PERSON SHALL PLACE ANYTHING ON ANY EASEMENT THAT WOULD PREVENT ANOTHER PERSON FROM USING ANY PART OF THE EASEMENT.
   (B). NO PERSON SHALL BE PREVENTED FROM CROSSING ANY EASEMENT TO GAIN ACCESS TO ANY LAKE WITHIN THE TOWNSHIP.
   (C). INGRESS AND EGRESS SHALL NOT BE DENIED TO ANY PRIVATELY OWNED PROPERTY.

2. USE OF DOCKS, BOATS, PONTOONS, JET SKIS AND ALL OTHER WATERCRAFT:
   (A). NO DOCK, RAFT OR SIMILAR EQUIPMENT SHALL BE PLACED IN ANY LAKE WITHIN THE BOUNDARIES OF ANY EASEMENT. THIS SECTION SHALL APPLY TO THOSE LIVING ADJACENT TO AN EASEMENT AS WELL AS TO THOSE USING THE EASEMENT.
   (B). NO WATERCRAFT SHALL BE MOORED AT THE END OF ANY EASEMENT. THIS SECTION SHALL APPLY TO THOSE LIVING ADJACENT TO AN EASEMENT AS WELL AS TO THOSE USING THE EASEMENT.
Appendix B
Sample Shoreland Overlay District
ROSS TOWNSHIP
PROPOSED ZONING ORDINANCE AMENDMENT
SHORELAND OVERLAY DISTRICT

Amend Section 4, Definitions, with the following new definitions:

Lot Coverage: The part or percent of a lot occupied by impervious surfaces, including, but not limited to, buildings or structures, paving, drives, patios, and decks.

Natural Vegetative Cover: Natural vegetation, including bushes, shrubs, groundcover, and trees, on a lot. Lawn shall not qualify as natural vegetative cover.

Replace the current Section 9.7, with a new Section 9.7, Water Quality Overlay District to read in full as follows:

9.7 Shoreland Overlay District

A. Purpose and Application

1. The purpose of this District is to recognize the unique physical, environmental, economic, and social attributes of water bodies, watercourses, and shoreland properties in Ross Township, to ensure that the structures and uses in this District are compatible with and protect these unique attributes. Other specific purposes include the prevention of water pollution, preservation of wildlife habitat, protection from the negative effects of erosion and storm water runoff, conservation of natural beauty and open space, and management of development in sensitive shoreland areas.

2. The Shoreland Overlay District is a supplemental District which applies to certain designated lands, as described in this Section, simultaneously with any of the other Zoning Districts established in this Ordinance, hereinafter referred to as the "underlying" Zoning District. Lands included in the Shoreland Overlay District are:
FOUR TOWNSHIP WATER RESOURCES COUNCIL

a. Watercourses - All lands located within five hundred (500) feet of the shoreline of the watercourses in the township including: Augusta Creek and its tributaries, Kalamazoo River and its tributaries; and;

b. Water Bodies - All lands located within five hundred (500) feet of the shoreline of the following water bodies in the township: Duck, Gull, Hamilton, Sherman, and Stony Lakes.

3. In cases where a parcel is partially inside and partially outside of the Shoreland Overlay District, only those portions located within the Overlay District are required to comply with the requirements of this District.

B. Development Requirements

1. Permitted Uses: With the exception of uses and activities prohibited herein, the following uses of land and structures shall be permitted in the Shoreland Overlay District: Permitted Uses and Special Exception Uses permitted in the underlying District, provided that Special Exception Uses meet the requirements of Section 9.8.

2. Prohibited Uses: The following uses and activities shall be specifically prohibited in the Shoreland Overlay District:

   a. Concentrated Animal Feeding Operation
   b. Slaughterhouses
   c. Gasoline Service Stations
   d. Automobile Repair Garage, Auto Body and Auto Paint Shops.
   e. Auto Washes, either self service or automatic
   f. Hazardous Waste Storage Facilities
   g. Petroleum Storage Facilities
   h. Landfills, Salvage or Junkyards
i. The construction of a canal, channel, or any artificial waterway
j. Any other use not specifically permitted in the underlying Districts.

C. Lot Area, Width, Yard, Building Area, Height, and Setback Requirements

1. Except as noted below, minimum requirements for lot area, lot width, yards, building area and building height shall conform to those required by the underlying District.

2. The following additional requirements shall apply for structures within the Shoreland Overlay District. Unless otherwise noted, all requirements apply to both watercourses and water bodies.

3. As of the effective date of this Ordinance, no dwelling or other main building, accessory building shall be constructed, erected, installed, or enlarged unless in compliance with the following setback requirements:

   a. Watercourses - The structures noted shall be set back a minimum of one hundred (100) feet, as measured from the shoreline, except that for each one (1) foot of elevation above a minimum of seven (7) feet above the shoreline, new structures may be placed five (5) feet closer to the shoreline of the watercourse, provided that no structure shall be located closer than seventy-five (75) feet from the watercourse.

   b. Water Bodies - The structures noted shall be set back a minimum of twenty-five (25) feet, as measured from the shoreline.
4. Average setbacks

a. Where the watercourse and water body setbacks for existing main buildings entirely or partially within two hundred (200) feet of the side lot lines, on the same side of the street and in the same zoning district of the subject lot are less than the setbacks required by C, 2, above, the required setback for the subject lot shall be the average of the setbacks of existing main buildings within the two hundred (200) foot distance.

b. The setback reduction shall only be permitted if there are two (2) or more lots occupied by main buildings within the two hundred (200) foot distance.

5. No dwelling shall be constructed or placed on lands which are subject to flooding.

D. Shoreline Vegetative Buffer

1. A buffer bordering any watercourse or water body, shall be maintained in its natural vegetative state. Lawn shall not qualify as natural vegetative buffer under this section. The minimum width of the buffer, as measured from the shoreline, shall be:

   a. Watercourses - one hundred (100) feet
   b. Water Bodies - twenty five (25) feet

2. Within the shoreline vegetative buffer, no more than an aggregate of twenty (20) feet for each one hundred (100) feet of shoreline may be cleared to afford water body or watercourse access, provided that the clearing does not cause erosion or sedimentation. Since the intent of the vegetative buffer is water quality protection, the lake access area must be covered in grass or other vegetative groundcover. Impervious materials such as asphalt or concrete shall not be used within the shoreline buffer area.

3. The Zoning Administrator may allow limited clearing of the vegetative buffer when required for construction of a permitted building or structure outside the vegetative buffer, provided that the land cleared is returned to a vegetative state of approximately the same quality as
that which existed prior to clearing and is equally effective in retarding runoff, preventing erosion, and preserving natural beauty.

4. These provisions shall not apply to the removal of noxious, dead, diseased, or dying vegetation or trees that are in danger of falling, causing damage to dwellings or other structures, or causing blockage of the watercourse or water body.

5. The shoreline vegetative buffer shall not be used for any motorized vehicular traffic, parking, or for storage of any kind, including junk, waste, or garbage, or for any other use not otherwise authorized by this Ordinance.

E. Lot Coverage and Natural Vegetative Cover

1. Not withstanding the requirements of the underlying zoning district, lot coverage shall not exceed forty percent (40%).

2. At a minimum, lots shall maintain a minimum of thirty percent (30%) of the entire lot area in natural vegetative cover. To the extent practicable, natural vegetative areas shall be maintained along lot lines, water bodies and watercourses, natural drainage courses, wetlands, and steep slopes. On lots bordering water bodies and watercourses, the Shoreline Vegetative Buffer required by this provision may be included as part of the natural vegetative cover required by this subparagraph.

3. In the case of planned unit developments, site condominiums, and open space developments, each individual lot need not meet the requirements of this Section, provided that the total project or an individual phase of a project meets the requirements of this Section.

F. General Design and Development Standards: For all development in the Shoreland Overlay District, the following design and construction standards shall be followed:

1. Natural vegetation shall be maintained wherever possible.

2. Existing mature trees shall be maintained on site where feasible.
3. To the extent feasible, natural drainage areas should be protected from grading activity.

4. Buildings and structures shall be clustered as much as possible to retain open space and surrounding tree cover and to minimize changes in topography.

5. The smallest practical area may be exposed at any one time during construction.

6. When land is exposed during development, the exposure shall be kept to the shortest practical period of time.

7. Appropriate measures shall be taken to ensure stormwater drainage will not adversely affect neighboring properties or the quality of area water resources. Where feasible, steps should be taken to retain and infiltrate uncontaminated stormwater (such as roof top drainage) on site.

G. Approvals

1. Site plan approval, in accordance with the requirements of Section 9.9 shall be obtained for the following uses or buildings (including additions or extensions to these uses or buildings) that are located wholly or partially within the Shoreland Overlay District.
2. Development within the Shoreland Overlay District must conform with all applicable County, State, and Federal, and Township statutes and ordinances including, but not limited to, Part 91, Soil Erosion and Sedimentation Control, of Michigan Act 451 of 1994. A building permit shall not be issued in the Shoreland Overlay District unless a copy of the soil erosion control permit required pursuant to Part 91 has been submitted to the Zoning Administrator.

3. All other requirements, including parking, signs, and other similar provisions shall be as required by the underlying zone district, except that where specific requirements of the Shoreland Overlay District vary or conflict with the regulations contained in the underlying zoning district, the stricter shall govern.
Appendix C
Lakeside Landscaping Guidelines
In General . . .

• Rake and dispose of leaves away from the lake. Compost if possible. Do not burn leaves near shore. Nutrients concentrate in the ash and are easily washed into the lake.

• Avoid using herbicides near the lake, many are toxic to aquatic life.

Fertilizing the Lawn

• If you don't use fertilizer, don't start now. If you do...

• Most lakeside lawns don't need phosphorus. Don't use fertilizer that contains phosphorus unless a soil test shows a need for it. Once in the lake, 1 pound of phosphorus can generate several hundred pounds of aquatic plants.

• Fertilizers are labeled with a 3-number system that indicates the percentage of the bag that contains nitrogen (first number), phosphorus (second number) and potassium (third number). Example: a 50-pound bag of 20-0-10 fertilizer contains 20% nitrogen (or 10 pounds), 0% phosphorus, and 10% potassium (5 pounds).

• Make sure the nitrogen is a slow-release type, such as sulfur-coated urea or IBDU.

• Use no more than 8 pounds of nitrogen per ¼-acre of lawn (¼-acre is about 100 by 100 feet).

• Don't fertilize the lawn until 3 weeks after the lawn begins to turn green in spring. If needed, the lawn may be lightly fertilized again in fall (late September through November) to promote root growth.

• When spreading fertilizer, don't allow fertilizer to land directly in the water.

Irrigation

• Lightly water after fertilizer is applied. Too much water will cause the fertilizer to leach right past the lawn and into the lake; the turf roots will never get a chance to use it.

• Irrigation during the hot, dry period of late summer can prevent the grass from turning brown. At that time, it's better to water for short periods (10 to 15 minutes) daily, rather than heavy watering once per week.

• The best time to water is early afternoon, just prior to the hottest part of the day.

Mowing

• Don't cut the grass too short! Near lakes, a mowing height of 3 to 3½ inches or higher is recommended.

• A general recommendation for mowing frequency is twice per week in spring, every two weeks in summer, and once per week in the fall.

• Return grass clippings back to the lawn. You can reduce the nitrogen needs of your lawn significantly by doing so. If possible, use a mulching lawn mower to aid in this process.

Greenbelt

• A greenbelt is a strip of land along the lakeshore that contains plants to trap pollutants that would otherwise wash into the lake.

• A greenbelt should be at least 10 feet wide, but more than 30 feet wide is best.

• Don't fertilize the greenbelt.

• For a natural look, don't mow the greenbelt. Allow natural grasses and wildflowers to grow.

• For a landscaped look, plant groundcovers, ferns, perennials, and shrubs.
Lakeside landscaping involves planting or preserving a zone of natural vegetation, a greenbelt, around the lake's edge. This vegetation acts as a buffer, trapping runoff and absorbing nutrients before they can enter the lake.

The lakefront should be landscaped to allow full recreational use of the lake and still provide water quality protection. Lawns alone do not make good greenbelts. Plant varieties should be selected that are attractive, easily maintained, and effective buffers.

To minimize the amount of leaves falling into the water, deciduous trees (i.e., trees that lose their leaves at the end of the growing season) should be planted as far from the water's edge as practical. Ideally, deciduous trees should be set back from the water's edge a distance equal to twice the mature height of the tree. Evergreens can be established closer to the lake shoreline. See list at left for some native greenbelt varieties.

<table>
<thead>
<tr>
<th>Hardy Perennials</th>
<th>Evergreen Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet Flag</td>
<td>Baldcypress</td>
</tr>
<tr>
<td>Astilbe</td>
<td>Canadian Hemlock</td>
</tr>
<tr>
<td>Bergenia</td>
<td>Cedar</td>
</tr>
<tr>
<td>Marsh Marigold</td>
<td>Eastern Red Cedar</td>
</tr>
<tr>
<td>Swamp Rose Mallow</td>
<td>Red Pine</td>
</tr>
<tr>
<td>Daylily</td>
<td>Tamarix</td>
</tr>
<tr>
<td>Plantain Lily</td>
<td>White Pine</td>
</tr>
<tr>
<td>Japanese Iris</td>
<td></td>
</tr>
<tr>
<td>Red Iris</td>
<td></td>
</tr>
<tr>
<td>Siberian Iris</td>
<td></td>
</tr>
<tr>
<td>Blue Flag</td>
<td></td>
</tr>
<tr>
<td>Cardinal Flower</td>
<td></td>
</tr>
<tr>
<td>Snake Weed</td>
<td></td>
</tr>
<tr>
<td>Pickerel Weed</td>
<td></td>
</tr>
<tr>
<td>Privetose</td>
<td></td>
</tr>
<tr>
<td>Arrowhead</td>
<td></td>
</tr>
<tr>
<td>Lizard's Tail</td>
<td></td>
</tr>
<tr>
<td>Arum Lily</td>
<td></td>
</tr>
<tr>
<td>Hardy Ferns</td>
<td>Ground Covers</td>
</tr>
<tr>
<td>Maidenhair Fern</td>
<td>Ajuga or Bugleweed</td>
</tr>
<tr>
<td>Cinnamon Fern</td>
<td>Crown Vetch</td>
</tr>
<tr>
<td>Royal Fern</td>
<td>Pachysandra</td>
</tr>
<tr>
<td>Ostrich Fern</td>
<td>Periwinkle</td>
</tr>
<tr>
<td>Ground Covers</td>
<td></td>
</tr>
<tr>
<td>Deciduous Shrubs</td>
<td></td>
</tr>
<tr>
<td>Autumn-Olive</td>
<td>Elaeagnus umbellata</td>
</tr>
<tr>
<td>Cotoneaster</td>
<td>Cotoneaster spp.</td>
</tr>
<tr>
<td>Dogwood, shrub form</td>
<td>Cornus spp.</td>
</tr>
<tr>
<td>Forsythia</td>
<td>Forsythia spp.</td>
</tr>
<tr>
<td>Honeysuckle</td>
<td>Lonicera spp.</td>
</tr>
<tr>
<td>Lilac, shrub form</td>
<td>Syringa spp.</td>
</tr>
<tr>
<td>Mockorange</td>
<td>Philadelphia coronarius</td>
</tr>
<tr>
<td>Ninebark</td>
<td>Physocarpus opulifolius</td>
</tr>
<tr>
<td>Privet</td>
<td>Ligustrum spp.</td>
</tr>
<tr>
<td>Rose-of-Sharon</td>
<td>Hibiscus syriacus</td>
</tr>
<tr>
<td>Viburnum</td>
<td>Viburnum spp.</td>
</tr>
<tr>
<td>Evergreen Shrubs</td>
<td></td>
</tr>
<tr>
<td>Juniper</td>
<td>Juniperus spp.</td>
</tr>
<tr>
<td>Sheep Laurel</td>
<td>Kalmia angustifolia</td>
</tr>
<tr>
<td>Deciduous Trees</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>Fraxinus spp.</td>
</tr>
<tr>
<td>Balsam Poplar</td>
<td>Populus balsamifera</td>
</tr>
<tr>
<td>Basswood</td>
<td>Tilia americana</td>
</tr>
<tr>
<td>Beech</td>
<td>Fagus spp.</td>
</tr>
<tr>
<td>Birch</td>
<td>Betula spp.</td>
</tr>
<tr>
<td>Black Locust</td>
<td>Robinia pseudacacia</td>
</tr>
<tr>
<td>Crabapple</td>
<td>Malus spp.</td>
</tr>
<tr>
<td>Quaking Aspen</td>
<td>Populus tremuloides</td>
</tr>
<tr>
<td>Red Maple</td>
<td>Acer rubrum</td>
</tr>
<tr>
<td>Red Oak</td>
<td>Quercus rubra</td>
</tr>
<tr>
<td>Redbud</td>
<td>Cercis canadensis</td>
</tr>
<tr>
<td>Serviceberry</td>
<td>Amelanchier spp.</td>
</tr>
<tr>
<td>Silver Maple</td>
<td>Acer saccharinum</td>
</tr>
<tr>
<td>Maple</td>
<td>Acer saccharum</td>
</tr>
<tr>
<td>White Oak</td>
<td>Quercus alba</td>
</tr>
<tr>
<td>Evergreen Trees</td>
<td></td>
</tr>
<tr>
<td>Baldcypress</td>
<td>Taxodium spp.</td>
</tr>
<tr>
<td>Canadian Hemlock</td>
<td>Tsuga canadensis</td>
</tr>
<tr>
<td>Cedar</td>
<td>Cedrus spp.</td>
</tr>
<tr>
<td>Eastern Red Cedar</td>
<td>Juniperus virginiana</td>
</tr>
<tr>
<td>Red Pine</td>
<td>Pinus resinosa</td>
</tr>
<tr>
<td>Tamarix</td>
<td>Tamarix spp.</td>
</tr>
<tr>
<td>White Pine</td>
<td>Pinus strobus</td>
</tr>
</tbody>
</table>

Native waterside plants

Lawn area away from lake

Evergreen

Beach area

Ground cover

Evergreen shrubs

Deciduous shrubs

Deciduous trees away from lake

Hardy ferns

Lawn area

Maintain existing vegetation where possible
References


