Kalamazoo River Watershed Management Plan

Prepared by the Kalamazoo River Watershed Council

March 2011

(updated August 2015)

This Nonpoint Source Pollution Control project has been funded in part through the Michigan Nonpoint Source Program by the United States Environmental Protection Agency under assistance agreement #2006-0148 to the Kalamazoo River Watershed Council for the Kalamazoo River Watershed Management Plan. The contents of the document do not necessarily reflect the views and policies of the EPA, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

Recommended Citation:

Kalamazoo River Watershed Council. 2011. *Kalamazoo River Watershed Management Plan.* Prepared for the Michigan Nonpoint Source Program (Michigan Department of Environmental Quality and the United States Environmental Protection Agency).

Acknowledgments

This Watershed Management Plan is the culmination of several years of work on the part of the Kalamazoo River Watershed Council and particularly our Coordinator and the lead author of this report, Jeffrey A. Spoelstra. Jeff attended innumerable meetings in the community, studied dozens of reports, and assimilated and compiled the information presented here. The Plan was greatly enhanced by the technical and scientific support of Kieser & Associates, LLC, who contributed with spatial data analysis, map production, and modeling.

We would also like to acknowledge our many partners in the quest to improve watershed protection and management in the Kalamazoo River watershed. Funding to prepare this Plan was provided primarily through a U.S. Environmental Protection Agency Section 319 grant administered by the Michigan Department of Environmental Quality (MDEQ; also known as MDNRE during the report preparation). Janelle Hohm and Julia Kirkwood of the MDEQ were especially helpful in providing guidance and support. Our work on non-point source pollution has been conducted in close collaboration with the Kalamazoo River/Lake Allegan Total Maximum Daily Load implementation committee, and we received input from many other governmental and non-governmental entities.

Stephen K. Hamilton, PhD President Kalamazoo River Watershed Council

Table of Contents

1. Intr	oduction	1
1.1.	The Challenge of Watershed Management	4
1.2.	The Purpose of this Plan	5
1.3.	Guiding Principles	6
1.4.	Structure and Use of this Plan	6
2. W	atershed Description	11
2.1.	Geology and Groundwater	11
2.2.	Hydrology: Ground and Surface Waters	16
2.3.	Land Use and Cover	20
2.4.	The Kalamazoo River Mainstem	26
2.5.	Dams and Reservoirs	27
3. Ca	ommunity Profile	30
3.1.	Synopsis of Regional History	30
3.2.	Governmental and Political Structure	32
3.3.	Urban and Suburban Centers and Industrial Activity	37
3.4.	Agriculture	38
3.5.	Demographics, Future Growth and Development	38
3.6.	Outdoor Recreation	39
4. No	ntural Features and their Protection	41
4.1.	Terrestrial Ecosystems	48
4.2.	Streams and Rivers	49
4.3.	Lakes	51
4.4.	Wetlands and Floodplains	52
4.5.	Rare Features and Species	58
4.6.	Invasive Species (aquatic and wetland)	59
5. Th	ne Legacy of Contaminated Sediments	60
5.1.	PCBs in the River System and Food Webs	
5.2.	Superfund	62
5.3.	Area of Concern	65
5.4.	Overlapping Superfund and AOC Issues	67
5.5.	Other Trace Contaminants	67
6. W	ater Resource Management	69

6.1.	Watershed Management: Setting Boundaries	69
6.2.	Land Use and Water Quality	69
6.3.	Regulatory Authority for Water Resources	70
6.4.	Roads and Water Quality	76
6.5.	Water Bodies (rivers, drains, streams, lakes)	78
6.6.	Local Water Quality Protection Policies	80
6.7.	Private Land Management	82
7. Wa	ter Quality Summary	86
7.1.	Designated and Desired Uses	86
7.2.	Water Quality: General Considerations	97
7.3.	Groundwater Quantity and Quality	99
7.4.	Loading to Lake Michigan	102
8. De	elopment of the Kalamazoo River Watershed Management Plan	103
8.1.	Public Input and Stakeholder Concerns	103
8.2.	Water Quality Evaluation: Linking Pollutant Loads to Water Quality	104
9. Pri	oritization - Areas, Pollutants, Sources	120
9.1.	Urban/Suburban Mitigation Areas	127
9.2.	Rural/Agricultural Mitigation Areas	128
9.3.	Ecosystem Restoration Areas to Ameliorate Non-Point Source Pollution	130
9.4.	High-Quality Aquatic Ecosystems Preservation Areas	131
<i>10.</i> (Goals and Objectives	133
10.1.	Goals for Designated Uses	133
10.2.	Goals for Desired Uses	138
11. I	mplementation Strategies	142
11.1.	Action Plan by Priority Area	
11.2.	Information and Education	153
12. N	Ioving from Plan to Action and Results	
12.1.	Knowledge and Awareness	
12.2.	Documenting Implementation	
12.3.	Monitoring Water Quality	
12.4.	Estimating Pollutant Load Reductions	
12.5.	Evaluating the Watershed Management Plan	171
13. Ref	erences cited	172

Attachments:

Attachment 1. Partnership Agreement

Attachment 2. Crosswalk Table of Subwatersheds as Defined by Project, Agency, and Management Unit

Attachment 3. Build-Out Analysis and Urban Cost Scenarios

Attachment 4. Road Stream Crossing Data for the Kalamazoo River Watershed Streambank Erosion Sites

Attachment 5. Common Pollutants, Sources and Water Quality Standards

Attachment 6. Individual Waterbody Assessment

Attachment 7. Buffer Analysis Memo

Attachment 8. Kalamazoo River BMP Screening Tool

Attachment 9. BMP Descriptions, Costs, and Load Reductions per Area Treated

Attachment 10. Public Comment

Attachment 11. Impaired Waterbodies

Attachment 12. Watershed and TMDL Phosphorus Load Reduction Goal Calculations

Attachment 13. Kalamazoo River Watershed Land Conservation Plan and Factsheet

Attachment 14. Landscape Level Wetlands Functional Assessment Summary

Tables

Table 1. Kalamazoo River subwatershed plans	9
Table 2 . Soils within the Kalamazoo River Watershed (from the STATSGO data base)	13
Table 3. Land use breakdown for the entire Kalamazoo River Watershed based on the data in Figure 9.	22
Table 4. Land use breakdown for each major watershed management planning area (see Table 1) in the	
Kalamazoo River Watershed (percentage of subwatershed area).	23
Table 5. Land use breakdown for areas without a WMP in the Kalamazoo River Watershed (percentage	of
subwatershed area).	24
Table 6. Political boundaries within the Kalamazoo River Watershed.	32
Table 7. Major streams in the Kalamazoo River Watershed	50
Table 8. Major lakes in the Kalamazoo River Watershed.	52
Table 9. Detailed functional comparisons of pre-settlement and 2005 (current) wetland acreage.	54
Table 10. Number, and average size, of wetlands area per restoration rank.	
Table 11. Private land protection options.	83
Table 12. Private land management programs.**	84
Table 13. Designated use definitions (see Attachment 5 for numerical standards and further detail).	86
Table 14. Impaired designated uses in the Kalamazoo River Watershed.	87
Table 15. Summary of subwatershed impaired and threatened use review and prioritization of pollutant	
plans published before as 2007 perceived by stakeholders (not 303(d) listings).	
Table 16. Impaired and threatened designated uses, known and suspected pollutants and sources, and	_
causes in the Kalamazoo River Watershed.	94
	101
Table 18. Additional in-lake water quality goals established as part of the Lake Allegan TMDL (source	:
DEQ 2001).	106
Table 19. Monthly TMDL total phosphorus loading goals under the load allocation for non-point source	es
and wasteload allocation for point sources to Lake Allegan (source: DEQ, 2001).	107
Table 20. Sources of total phosphorus loading (in lbs/year) per land use in the Kalamazoo River	
Watershed in 2001 and 2030 (see Attachment 3). These townships have the highest predicted urban lan	d
	112
Table 21. Townships predicted to have the greatest increase in runoff and pollutant loads as a percenta	ige
of the increases predicted watershed-wide (see Attachment 3).	
Table 22. Stormwater control scenarios in cities and townships with high stormwater treatment costs	
related to increases in urban loading from new development projected for 2030 (see Attachment 3).	116
	121
	124
Table 24. Pollutant load comparison between 2001 and 2030 land uses within 100 meter riparian area	-
the Kalamazoo River watershed (see Attachment 7).	125
Table 25. Buffer scenario and cost analysis for agricultural land conversion to grass filter strips (see	
	126
Table 26. Goals and objectives as related to ranked pollutants, sources, and causes in the Kalamazoo R	
	134
Table 27. Desired uses of the Kalamazoo River Watershed	
Table 28. Kalamazoo River Watershed management action table.	
	153
Table 30. Information and Education Strategy for the Kalamazoo River Watershed Related to Watershed	155 d
Goals ^{1,2}	nent
	164
	166
	170
Table 35. Comparison of migner rotating tana uses to lower rotating tana uses. Table 34. Estimated load reductions and volume reduction per acre of land treated from recommended	1,0
urban stormwater BMPS (by land use type).	170
	171
nuole 55. 1 ypical politikana louting lo groundwater from septie systems.	1/1

Figures

Figure 1. Kalamazoo River watershed highlighted in green within major Michigan watersheds, some of	
which extend into neighboring states	1
Figure 2. Map of the Kalamazoo River Watershed featuring major settlements, roads, and county and township boundaries	2
Figure 3. Subwatershed planning areas and zones without nonpoint source planning coverage as of 200	
the Kalamazoo River Watershed (note a larger area in the Four Townships Watershed Area achieved	' <i>'</i> 111
coverage with an approved watershed plan in 2010).	8
	$\frac{-6}{12}$
Figure 4. Shaded relief of the Kalamazoo River Watershed.	_
Figure 5. Soils within the Kalamazoo River Watershed (STATSGO data base)	_ 14
Figure 6. Agricultural land classifications in the Kalamazoo River Watershed.	_ 15
Figure 7. Kalamazoo River Watershed 14 digit Hydrologic Unit Codes.	_ 18
Figure 8. Kalamazoo River Watershed 10-digit Hydrologic Unit Code major subwatersheds (14-digit lin	
are also visible)	_ 19
Figure 9. Land use and cover in the Kalamazoo River Watershed in 2001 based on data from the	
Integrated Forest Monitoring, Assessment, and Prescription (IFMAP) system.	_ 21
Figure 10. Conservation and recreation lands in the Kalamazoo River Watershed	_ 25
Figure 11. Congressional districts	_ 36
Figure 12. State Senate districts	_ 36
Figure 13. State House districts	_ 37
Figure 14. Kalamazoo River watershed land conservation priority areas. Map developed by the Southw	est
Michigan Land Conservancy	_ 44
Figure 15. Wellhead protection zones in Calhoun County outlined in yellow.	46
Figure 16. Wellhead protection zones in Kalamazoo County outlined in orange	47
Figure 17. Michigan Department of Natural Resources, Fisheries Division, stream classification, 1964	_
(from Wesley, 2005)	51
Figure 18 (previous page). Kalamazoo River wetland restoration areas (red) are wetlands that existed	-
prior to settlement and development of the watershed in the early 1800s. Areas in green represent the	
current wetlands that exist within the watershed	57
Figure 19. The Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund site. Red shaded areas	_ 07
indicate the extent of the entire site. Green shaded areas indicate an early management unit designation	11
which has since been changed (see Figure 20)	" 63
	_
Figure 20. The seven areas of operable unit #5 of the Allied Paper, Inc./Portage Creek/Kalamazoo Rive	
Superfund site	_ 64
Figure 21. The Kalamazoo River Watershed Area of Concern extends along the river courses outlined in	
gold	_ 66
Figure 22. Impervious cover in the Kalamazoo River Watershed.	_ 77
Figure 23. Road stream crossings surveyed by the MDEQ in 2000-2003.	_ 78
Figure 24. NPDES pollutant discharge permits in the Kalamazoo River Watershed.	_ 92
Figure 25. Comparison of non-point source total phosphorus loading from 2001 and 2030 land uses for	
0	108
Figure 26. Comparison of land use distributions in 2001 and 2030 by percentage (see Attachment 3)	108
Figure 27. Current (2001) runoff, total suspended solids (TSS), total phosphorus (TP) and total nitroge	n
(TN) loading and predicted increases in 2030 (see Attachment 3)	110
Figure 28. Sources of total phosphorus loading (in lbs/year) per land use in the Kalamazoo River	
Watershed in 2001 and 2030 (see Attachment 3)	111
Watershed in 2001 and 2030 (see Attachment 3)	red
and include Cheshire, Salem, Trowbridge, Pine Grove, Allegan, Dorr, Otsego, Monterey, and Watson (
Attachment 3).	113
Figure 30. Increasing cost for all municipalities in each area (in millions of 2010 dollars) for stormwat	
controls to treat phosphorus to the levels specified in each scenario for both Lake Allegan TMDL area a	
	115
the first areas (downshift and of Lake Antegan) (see Antechnicia 5).	115

1. Introduction

The Kalamazoo River Watershed drains 2,020 square miles in southwestern lower Michigan and is one of the larger watersheds in Michigan, draining to Lake Michigan (Figure 1). The Kalamazoo River and its many connecting streams, lakes, and wetlands drain a landscape with diverse topography, soils, hydrology, natural habitats, development patterns, and economic interests (Figure 2).

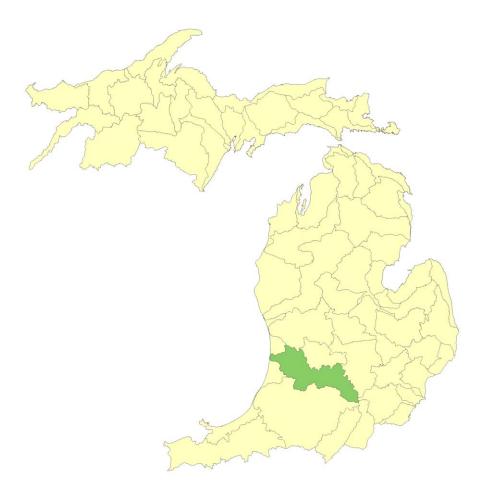


Figure 1. Kalamazoo River watershed highlighted in green within major Michigan watersheds, some of which extend into neighboring states.

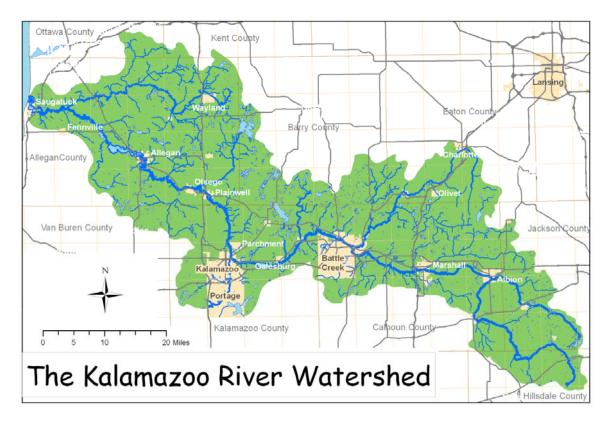


Figure 2. Map of the Kalamazoo River Watershed featuring major settlements, roads, and county and township boundaries.

The Kalamazoo River is notable for the great tragedy of historical industrial pollution in and along the river and its valley, with some of the most extensive contaminated sediments in the US. It is perhaps surprising, then, that this watershed also harbors some of the best preserved examples of Midwestern U.S. habitats including headwater streams, wetlands and floodplains, and has several large areas of contiguous forests and grasslands that are publicly accessible in state parks and game areas. The growing interest in local sustainability has engendered a sense of appreciation and shared ownership of the vital natural resources associated with the Kalamazoo River, its tributaries, lakes, and connected groundwater. In recent years there has been heightened interest among residents and governments in the region in pollution cleanup and prevention, smart growth, and habitat improvement and preservation, i.e., in watershed management in its broadest sense. This Plan seeks to channel this interest into an integrated vision, with specific steps for the near- and longer-term future to attain the goals and objectives we elucidate.

During the 1800s, people used the abundant water resources of the Kalamazoo River for waterpower, navigation and fisheries. Hydroelectric dams built along the river provided power as early as 1900, with 7 dams along the main river and over 100 in the overall watershed by the 1930s. Later the river became crucial for the development of manufacturing, including paper industries. Unfortunately the river was also used to dispose of wastes, resulting in dramatic degradation of water quality that probably reached its worst point in the 1950s and 1960s. The legacy of this past abuse of the river

remains with us today in the form of contaminated sediments, particularly behind the dams where the reduced flow allowed sediment accumulation.

In 1953 a photo of a massive fish kill on Dumont Creek, a Kalamazoo River tributary, was featured on the cover of *Life Magazine*. That photo, entitled "Four acres of dead carp," caught the nation's attention, and public reaction contributed to the awakening of the U.S. environmental movement. The fish kill presumably resulted when the Kalamazoo River oxygen levels crashed due to an overload of municipal and industrial organic waste in the river. Later realization that there was widespread contamination of river fishes with synthetic industrial compounds known as PCBs (polychlorinated biphenyls) eventually led to the designation of the lower river and its adjacent floodplain as a federal Superfund Site in 1990. The history of industrial and sewage contamination as well as growing recognition of the PCB contamination problem resulted in the widespread impression of the river as unsanitary and worthless, a view which still persists today in some people's minds, but is highly undeserved.

In fact the ecological condition and aesthetic appearance of the river are greatly improved today. Gone are the days of unregulated industrial and municipal waste disposal, and the water clarity has improved dramatically. Diverse fishes and clams are returning, the riparian lands along the river are reforested with native floodplain forest, and the water is generally safe for recreation. Point sources of pollution from sewage and industrial activity are treated and their discharges are regulated under the Clean Water Act. Increasing attention is paid to more diffuse sources of pollution that threaten groundwater as well as runoff. Non-motorized land trails and water trails are being assembled on or along many water bodies including the Kalamazoo main stem. Waterfront property in urban areas is being redeveloped for other purposes, often emphasizing the aesthetic value of a view to the river.

While much progress has been made, significant challenges remain. Point sources of pollution have been brought under regulation, but now nonpoint source pollution contributes most of the total nutrient loading and remains an intransigent problem that demands fresh solutions. The insidious but largely invisible problem of PCB contamination in the river system presents a special challenge because these highly persistent contaminants are widely dispersed through the river and its reservoirs, resulting in the need for fish consumption advisories. Options to clean up PCB-contaminated sediments along the lower river course are still being deliberated. Overall, insufficient action has been taken so far to remove or isolate PCBs from the aquatic food chain, although the recent removal of the remnants of an old dam (Plainwell Dam) and the most contaminated sediments above it as well as contamination "hot spots" above the Plainwell diversion dam both represent encouraging steps toward a full cleanup.

The rupture of a major crude-oil pipeline near Marshall in late July 2010, which released ~20,000 barrels of oil, much of it entering the Kalamazoo River, will hopefully prove to be a unique event in the history of the region. Yet it serves as a reminder of the vulnerability of our water resources to accidental discharges and the need to be ever vigilant in safeguarding them. Had that oil reached the PCB-contaminated reaches of the

lower river, or made it to Lake Michigan, or entered our groundwater aquifers, the impacts could have been even more severe – and protracted – than they were.

A challenge for the future is to advocate smart growth in place of traditional growth and development practices and policies, which continue to result in suburban sprawl and the consequent loss of open space, prime farm land, and important habitat such as wetlands. Unrestrained growth into rural areas results in stressed transportation networks and the weakening of agricultural- and tourism-dependent communities and support systems. Alternative development options are well documented and mechanisms to encourage them have been adopted in many other communities; we need to pursue the best and most appropriate of those ideas for the Kalamazoo River watershed.

1.1. The Challenge of Watershed Management

Regulatory, non-regulatory, and voluntary efforts and programs have yielded a diverse and active community of watershed stakeholders and managers, a growing number of watershed-based plans for tributaries within the Kalamazoo River watershed, and ongoing collaborative watershed management programs. However the capacity of the various organizations to partake in watershed planning and project implementation (a.k.a. Best Management Practices [BMPs]) is unstable from year-to-year, particularly because these activities are generally funded by short-term grants. A long-term and spatially broad approach to watershed management would bring advantages of continuity, optimal allocation of resources, and fostering synergistic interactions and efficiency among the many partners with interests in watershed issues.

Implementing watershed improvement actions comes down to one simple rule: people can make better land management choices that improve and protect shared water resources, and we can encourage such decisions with a combination of education, incentives, and policies. Much of watershed management is geared toward inspiring and incentivizing people to make choices that protect or enhance our shared water resources, choices that are underpinned by scientific and technical understanding.

Planning for the future always entails scenarios of population growth and economic development that are at best an educated guess, often relying heavily on extrapolation of past patterns of change. An additional and particularly daunting challenge for watershed planning is posed by the prospect of climate change and its uncertain implications for water resources. In southwest Michigan such changes are projected to include hotter summers, longer growing seasons, greater stress to plants including crops, and decreased water levels in lakes and flows in streams during the summer (<u>http://www.globalchange.gov/what-we-do/assessment</u>). At the same time, the general acceleration of the hydrological cycle may produce heavier precipitation events and thereby increase impacts of episodic storm runoff and river flooding. As the climate changes, we will have to adapt to new stresses on aquatic ecosystems and on our water supplies. Naturally, it behooves us as members of the global community to do all we can to help reduce our own contributions to climate change, for example by taking every opportunity to be more efficient and environmentally sustainable in our use of energy,

and to reduce our consumption of material goods and food products that are produced at the cost of climate stability for future generations. Nonetheless, the balance of scientific evidence points to the inevitability of significant changes in climate, and while we can and should act now to reduce the severity of those changes, we will have no choice but to adapt to the changing climate of the future.

1.2. The Purpose of this Plan

A great deal of watershed management activity has taken place since the previous watershed-wide plan was prepared by the Kalamazoo River Watershed Council under its former name as a Public Advisory Council (KRPAC, 1998). The development and implementation of a number of watershed management plans for tributaries (sub-watersheds) within the Kalamazoo River watershed has been completed. However while we can point to many successes at local scales, the watershed planning efforts conducted over recent years have been largely disparate with little linkage and coordination. Hence the watershed community has expressed its desire to develop a unifying vision for water resources planning and management: a comprehensive Watershed Management Plan for the Kalamazoo River Watershed. This desire became evident at several meetings that brought together people from throughout the watershed who were interested in watershed management and planning (e.g., the 2005 Watershed Forum and 2007 Watershed Technical Summit, see www.kalamazooriver.org).

This Watershed Management Plan, prepared by the Kalamazoo River Watershed Council (KRWC) under an EPA Clean Water Act Section 319 grant administered through the Michigan Department of Environmental Quality (known as the Department of Natural Resources and Environment from 2008-2010), seeks to fulfill that desire. The purpose of the Plan is to provide a unified framework for dealing with water resource issues in the Kalamazoo River watershed. The Plan emphasizes an integrated approach, recognizing that water supply and water quality cannot be managed separately, and that ground water and surface water are interconnected resources, separated in time and space, but fundamentally interrelated (Winter et al. 1998: http://pubs.usgs.gov/circ/circ1139/pdf/front.pdf).

Watershed management is challenging because it entails a complex balance of multiple and sometimes conflicting issues and interests. This Kalamazoo River Watershed Management Plan (KRWMP) is an attempt to meet that challenge, to take into account the particular features of our local water resources and the many needs it must meet, and to weave them into a unifying vision for the Kalamazoo River watershed. Our hope is that this Plan will provide an enduring framework, yet one that is open to modification in response to new information and emerging issues.

This Plan is conceived following the "ecosystem management" paradigm that has been adopted by many resource management agencies in recent years (Christensen et al. 1996). The ecosystem management approach requires considering all aspects of water resources in decision-making, and recognizing that a wide range of decisions and actions — not just those traditionally associated with water management — can affect our water resources.

Holistic watershed management must transcend traditional jurisdictional boundaries, recognizing that water resources are traditionally managed without explicit recognition of the overall interlinked hydrological system. A key consideration is the long-term sustainability (i.e., for future generations) of water resources for human uses, including water supply, irrigation, and recreational and aesthetic values, as well as for the maintenance of natural ecosystems and biodiversity. Given the complexity of this task, watershed management will be successful only if we can promote coordination and cooperation across institutions, governmental units, watershed organizations, and subwatersheds; above all citizen education and involvement are fundamental.

The Plan sets a direction for policy and management decisions over at least the next decade and should be used as a guide for policy setting, decision-making and prioritizing actions originating from funding agencies, governmental units, private entities, organizations, and individuals. It forms a framework within which existing and new programs can be incorporated and coordinated for the most effective results. It also points to emerging issues and new areas in need of research and study.

The specific rationales for and purposes of this watershed-wide Plan include the following:

- To establish a unifying vision for water resources management
- To better coordinate ongoing efforts to preserve, protect, and enhance the water resources of the Watershed and the ecological, social and economic benefits they provide
- To identify and consider relationships between land use and water resources
- To explore the way forward towards more effective water resources management
- To identify a set of actions for achieving specific goals
- To invite all levels of stakeholders into the process of water resources management
- To serve as an approved 9-elements nonpoint-source plan under the EPA's Clean Water Act (Section 319).
- 1.3. Guiding Principles

Watershed management is a community driven process involving coalitions and partnerships of stakeholders developing multi-faceted solutions designed to meet specific water quality based goals. The general principles and sequential stages of watershed management are:

- Assess the nature and status of the watershed/ecosystem;
- Define short and long term goals;
- Determine objectives and actions needed to achieve selected goals;
- Consider benefits and costs of each action;
- Document plan and obtain commitment for actions;
- Implement actions; and
- Evaluate effects of actions and progress toward goals.
- 1.4. Structure and Use of this Plan

Implementing water resource protection and restoration requires a distributed network of watershed implementers, yet those implementers need to stay connected, learn from one another, and have the opportunity to speak with one voice when issues are best tackled at larger scales (e.g., watershed, regional, State, Great Lakes Basin, national, and global). Therefore we must take advantage of rapidly evolving electronic communication technologies and environmental assessment tools and models.

This Plan charts a course that will serve to guide watershed stakeholders new and old. Entities that are new to watershed thinking always have the option to become involved in the Kalamazoo River Watershed Partnership contact the Kalamazoo River Watershed Council (<u>http://www.kalamazooriver.org</u>). The Partnership may in time formalize the participation of Watershed Partners that have signed on to a Partnership Agreement (Attachment 1). Partners benefit now from regular communication through a Watershed Communication Center, maintenance of a Watershed Library by the Kalamazoo River Watershed Council, shared resources and outreach efforts, and cross promotion of related efforts to reach the general public to inspire and incentivize sustainable water resource behavior, choices, and land management.

Organization of the Plan

To a large extent this Plan builds on the successes of a variety of existing and ongoing efforts in sub-watersheds and additionally fills in some gaps not presently addressed in sufficient detail or spatial coverage by existing plans (Figure 3; Table 1). Subwatershed management plans can be downloaded from MDEQ at <u>http://www.michigan.gov/deqnps</u>.

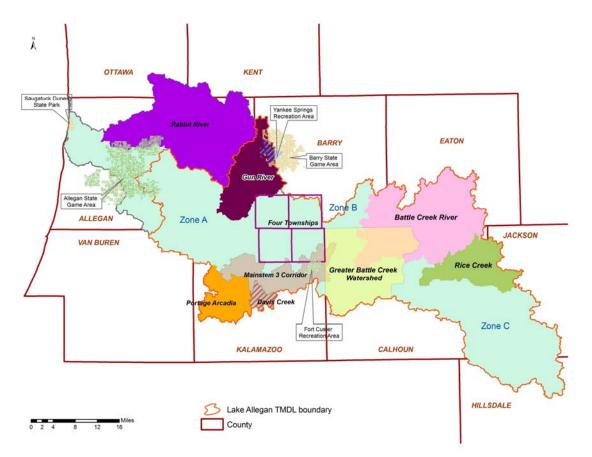


Figure 3. Subwatershed planning areas and zones without nonpoint source planning coverage as of 2007 in the Kalamazoo River Watershed (note a larger area in the Four Townships Watershed Area achieved coverage with an approved watershed plan in 2010).

Table 1. H	Kalamazoo	River	subwat	ershed	plans	

Name of Watershed Plan	Submitted by	CMI Approved	9 Elements Approved*	Date
This Plan – The Kalamazoo River Watershed Management Plan (entire watershed)	Kalamazoo River Watershed Council	Pending	Pending	2010
Kalamazoo River Watershed Preventive & Remedial Action Plan	Kalamazoo River Watershed Council	Yes	No	1998
Michigan Department of Environmental Quality Biennial Remedial Action Plan Update for the Kalamazoo River Area of Concern	Michigan Department of Environmental Quality	NA	NA	2009
Kalamazoo River Area of Concern: Restoration Plan for the "Loss of Fish and Wildlife Habitat" and "Degradation of Fish and Wildlife Populations" Beneficial Use Impairments	Kalamazoo River Watershed Council	NA	NA	2009
Kalamazoo River – Ceresco Reach Watershed Management Plan	Calhoun Conservation District	Plan Under I	Development	
Lake Allegan/Kalamazoo River Phosphorus Total Maximum Daily Load (TMDL) Implementation Plan Lake Allegan/Kalamazoo River Phosphorus TMDL Strategic Action Plan	The Forum of Greater Kalamazoo TMDL Implementation Committee	NA	NA NA	2001 Updated regularly
Battle Creek River Watershed Management Plan	Calhoun Conservation District	Yes	Yes	2004
Greater Battle Creek Area Watershed Plan Rice Creek Watershed Management Plan	City of Battle Creek, Calhoun Conservation District, City of Springfield Calhoun Conservation District	Yes	No Yes	2001
Kalamazoo River Mainstem 3 Corridor Watershed Management Plan**	Kalamazoo County Road Commission	No	No	2007
Portage, Davis & Gourdneck Creeks Watershed Plan	City of Portage	Yes	No	2005
Portage Creek/Arcadia Creek Watershed Management Plan	The Forum of Greater Kalamazoo	Yes	Yes	2006
Four Township Area Watersheds	Four Township Water Resources Council Allegan Conservation	Yes	Yes	2010
Gun River Watershed Plan	District	Yes	Yes	2004
Rabbit River Watershed Plan (entire watershed)	Allegan County Drain Commissioner	Yes	Yes	2010
Allegan State Game Area Fort Custer	Management Plans Management Plans	NA NA	NA NA	
				•

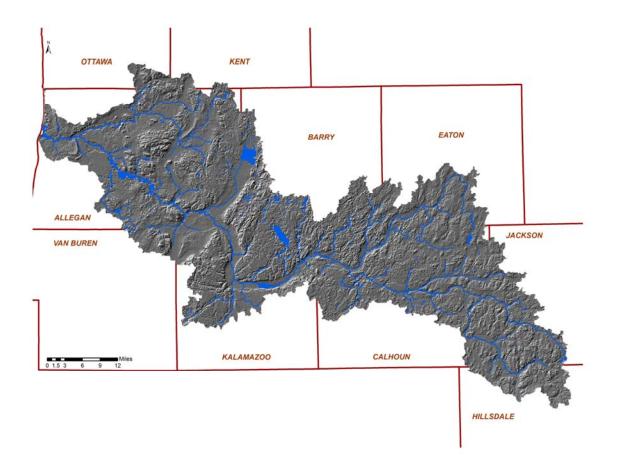
* Plans that are only CMI approved need to be updated (through a planning grant or other funding) to meet 9 Elements criteria to be eligible for 319 implementation funding.

** Plan was developed as a Municipal Separate Storm Sewer System (MS4) permit requirement and has not been CMI or 9 Elements approved.

NA = Not Applicable

This Watershed Management Plan is designed to be accessible (web-friendly) and transferrable to a designated watershed lead/umbrella planning and implementation entity (e.g. Watershed Coordinator, Watershed Partnership Coordinator, Watershed Utility, or Watershed Commission). The Kalamazoo River Watershed Council

(<u>www.kalamazooriver.org</u>) currently voluntarily fills this collaborative function on behalf of watershed partners, but actions identified in the Watershed Management Plan are intended for any organization to implement.


Many existing planning efforts have resulted in: 1) general management objectives; and/or, 2) site- or area-specific objectives (often called "actions"). When compiled for all existing plans, there are over one-hundred pages of listed actions across the subwatershed management units (contact the Watershed Council for details). No attempt was made to re-prioritize existing sub-watershed management unit actions; rather, we synthesize and augment this information here. This Plan is intended to be available for periodic updates on actions that have been completed. We anticipate that regular subwatershed planning and document updates by partners will be submitted for incorporation into this Plan.

2. Watershed Description

2.1. Geology and Groundwater

The Kalamazoo River drains a landscape lying on thick glacial deposits, and as a result there is generally a high degree of linkage between surface and ground waters, with a predominant influence of groundwater discharge on streams, rivers, most lakes, and many wetlands (Grannemann et al. 2008). Bedrock outcrops are absent and although the depth of unconsolidated glacial deposits lying on the underlying bedrock is variable, in most of the watershed it is quite thick. Glacial deposits range in depth from more than 400 feet in the western portions of the watershed to 50 feet or less east of Battle Creek.

The geomorphology of the landscape is largely a reflection of the most recent continental glaciation, when two large ice lobes converged in this area (Kincare and Larson 2009). As the glacial ice retreated from the area around 14,000 years ago, it left till plains and upland end moraines as well as relatively level outwash plains. The Kalamazoo River and its floodplain were originally formed from glacial meltwaters, and the morphology of the river valley reflects the much higher discharge at that time, as well as postglacial fluctuations in Lake Michigan water levels and the "rebound" of the underlying crust after the weight of glacial ice was removed. Because of this origin, the floodplain is quite wide in many reaches compared to modern-day discharge of the river (Figure 4).

Figure 4. Shaded relief of the Kalamazoo River Watershed.

The geology and hydrogeology of the watershed are well described in previous publications, including Rheaume (1990) and Wesley (2005). A recent overview of Michigan geography also contains much useful information pertinent to this watershed and provides it in the context of the broader region (Schaetzl et al. 2009).

Tributary streams reach the river through valleys that dissect the glacial terrain, and often originate in or pass through lakes and wetlands. Many streams gain most of their water from diffuse groundwater inputs. A substantial fraction of the upland area is composed of undulating, hummocky terrain that can be difficult to assign to a particular stream watershed on the basis of surface topography. Most of the abundant lakes and wetlands of the area occupy depressions (glacial kettles) formed by the melting of residual glacial ice, and many lack surface connections to other water bodies. The lowermost reach of the main stem of the river traverses former lake sediments deposited during a period of high lake levels that followed the last glaciation.

Soils in the watershed are diverse and range from dominance by clay and silt to sand and organic materials (Table 2; Figure 5). Group A soils are mostly sandy and loamy types of soils with a low runoff potential and high infiltration rate even when thoroughly wetted. Group A soils have an infiltration rate of 1.0-8.3 inches/hour. These coarse soil types

allow water to infiltrate and recharge the groundwater supply. Group B soils are intermediate with an infiltration rate of 0.5-1.0 inches/hour. Group C soils are sandy clay loams with a low infiltration rate when thoroughly wetted (i.e., 0.17-0.27 inches/hour). Group D soils have the lowest infiltration rate, ranging 0.02-0.10 inches/hour. Protection of areas with high infiltration capacity (Group A soils) is especially important for maintaining: 1) groundwater-surface water interactions; 2) ground- and stream-water quality; and, 3) temperature regimes within the watershed. Examples of measures to protect groundwater recharge include impervious cover restrictions and agricultural BMPs.

MUID	Name	Group
MI006	MORLEY-BLOUNT-PEWAMO (MI006)	С
MI011	COLOMA-SPINKS-OSHTEMO (MI011)	A/B
MI014	SPINKS-HOUGHTON-BOYER (MI014)	В
MI017	MIAMI-CONOVER-BROOKSTON (MI017)	В
MI022	HOUGHTON-CARLISLE-ADRIAN (MI022)	A/D
MI023	MIAMI-HILLSDALE-EDWARDS (MI023)	В
MI024	BOYER-OAKVILLE-COHOCTAH (MI024)	В
MI034	RIDDLES-HILLSDALE-GILFORD (MI034)	В
MI035	MARLETTE-CAPAC-PARKHILL (MI035)	В
MI036	MARLETTE-CAPAC-SPINKS (MI036)	В
MI040	ITHACA-ZIEGENFUSS-PEWAMO (MI040)	C/D
MI041	BARRY-LOCKE-HATMAKER (MI041)	В
MI043	MATHERTON-SEBEWA-FOX (MI043)	В
MI045	OSHTEMO-KALAMAZOO-HOUGHTON (MI045)	В
MI046	OAKVILLE-COVERT-ADRIAN (MI046)	А
MI047	SCHOOLCRAFT-KALAMAZOO-ELSTON (MI047)	В
MI048	CAPAC-RIDDLES-SELFRIDGE (MI048)	В
MI050	GRATTAN-PIPESTONE-GRANBY (MI050)	А
MI058	PERRINTON-ITHACA-COLOMA (MI058)	A/D
MI061	PARKHILL-CAPAC-LONDO (MI061)	В
MI082	GILFORD-MAUMEE-SPARTA (MI082)	В
MI083	GRANBY-GILFORD-THETFORD (MI083)	A/B
MI084	URBANLAND-PARKHILL-CAPAC (MI084)	B/D
MI091	OSHTEMO-SPINKS-MARLETTE (MI091)	В

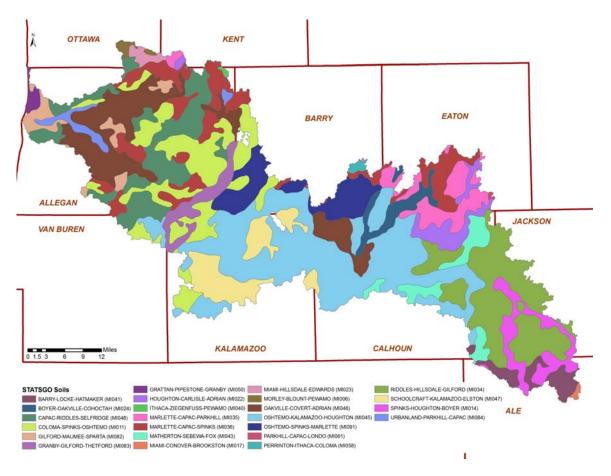
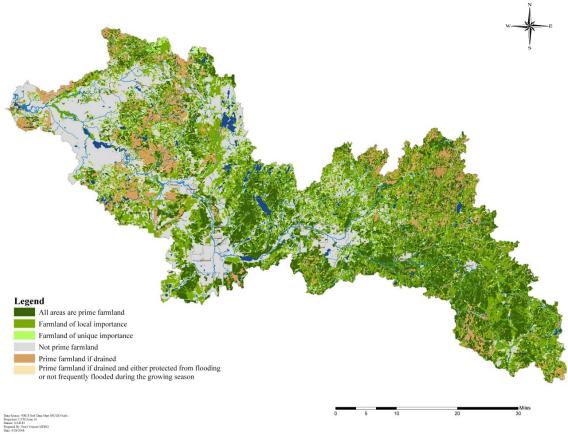



Figure 5. Soils within the Kalamazoo River Watershed (STATSGO data base).

The most common upland soil formations are alfisols, reflecting the predominance of deciduous forest during their formation (Schaetzl 2009). About 25% have clay loam or clay textures (found mostly in Eaton County and to a lesser extent in Allegan and Van Buren counties). About 70% of the watershed is covered with coarse-textured soils that are relatively permeable to infiltration of water. Forty percent are sandy loams and loams of intermediate texture (found primarily in Calhoun, Allegan, Barry, and Kalamazoo Counties). Soils with loamy sand and sandy textures make up approximately 30% of the land (found mostly in the western part of the basin). The remaining 5% are organic and are distributed through the basin, usually in wetlands and river bottoms. Prime agricultural soils cover a significant portion of the watershed (Figure 6).

Farmland Classification within the Kalamazoo Watershed

Figure 6. Agricultural land classifications in the Kalamazoo River Watershed.

Climate

Climate describes the general weather conditions over a long period of time in a given area. The climate of southwestern Michigan is humid with a significant influence of the Great Lakes. Mean temperatures range from 23°F (-5°C) in January to 72 °F (22°C) in July (1971-2000: Andresen and Winkler 2009). Average annual precipitation is about 32 inches (813 mm); about half falls as snowfall. Climate in areas near the Great Lakes, including western parts of the Kalamazoo River watershed, is influenced by the "lake effect" of Lake Michigan that includes elevated snowfall and milder temperatures. The climatic influence of Lake Michigan provides niches for a variety of native plant species as well as certain types of agriculture (e.g., fruit trees, blueberries) that would not grow further inland. Average growing season ranges from about 153 days at the eastern end of the watershed to about 184 days along Lake Michigan.

There is a growing body of scientific evidence suggesting that climate change is already impacting ecosystems and water resources in subtle but important ways. Climate change projections based on climate models are best interpreted on regional scales. A recent assessment for the Midwest US by the United States Global Change Research Program (2009) is excerpted here:

Average temperatures in the Midwest have risen in recent decades, with the largest increases in winter. The length of the frost-free or growing season has been extended by one week, mainly due to earlier dates for the last spring frost. Heavy downpours are now twice as frequent as they were a century ago. Both summer and winter precipitation have been above average for the last three decades, the wettest period in a century. The Midwest has experienced two record-breaking floods in the past 15 years. There has also been a decrease in lake ice, including on the Great Lakes. Since the 1980s, large heat waves have become more frequent than anytime in the last century, other than the Dust Bowl years of the 1930s. The observed patterns of temperature increases and precipitation changes are projected to continue, with larger changes expected under higher emissions scenarios.

Key issues:

- During the summer, public health and quality of life, especially in cities, will be negatively affected by increasing heat waves, reduced air quality, and increasing insect and waterborne diseases. In the winter, warming will have mixed impacts.
- The likely increase in precipitation in winter and spring, more heavy downpours, and greater evaporation in summer would lead to more periods of both floods and water deficits.
- While the longer growing season provides the potential for increased crop yields, increases in heat waves, floods, droughts, insects, and weeds will present increasing challenges to managing crops, livestock, and forests.
- Native species are very likely to face increasing threats from rapidly changing climate conditions, pests, diseases, and invasive species moving in from warmer regions.

Reference: http://www.globalchange.gov/what-we-do/assessment

Protection and management of our water resources will need to adapt to the changing climate, and projection of the future based on the past will become increasingly uncertain.

2.2. Hydrology: Ground and Surface Waters

The Kalamazoo River Watershed is richly endowed with surface and subsurface water, with most of it in good to excellent condition for supporting human uses and aquatic life. Yet protection of this valuable resource should be paramount because it is vulnerable to degradation.

Ground water provides the major water source for residences and communities, industries, and agriculture throughout the watershed. The sustainability of this resource depends on maintenance of both its quantity and quality. Infiltration of water from rain and snow replenishes (recharges) groundwater aquifers, but urban and suburban land use tends to reduce infiltration by diverting more water to drainage systems. Agricultural land use can also result in less groundwater recharge where tile drainage systems are installed and by producing seasonally bare and sometimes compacted soils. Groundwater quality is impacted by a myriad of human activities including fertilizer and waste applications, septic system discharges, road salts, and accidental leakage or spills of chemicals. Groundwater is particularly vulnerable in the Kalamazoo River watershed due to the prevalence of well drained soils.

Watershed-scale hydrological studies include Allen et al. (1972), Rheaume (1990), and Fongers (2008), with the former two focused on Kalamazoo County. For an extensive

review of river hydrology see The Kalamazoo River Fisheries Assessment (Wesley, 2005).

Landscape-scale water budgets have been evaluated for the Kalamazoo River watershed (Allen et al. 1972). Analysis of a 34-year record (1933-66) of precipitation, evaporation, and river runoff for the Kalamazoo River watershed indicated that of the 35 inches (890 mm) of annual precipitation, about 65% was returned to the atmosphere by evapotranspiration and most of the remainder became river runoff. The annual rate of groundwater recharge by precipitation in the area averaged 9 inches (230 mm) and usually occurs mainly during the cooler months of November-May, when evapotranspiration rates are low. Stream hydrograph separation revealed that about two-thirds of the annual discharge of the Kalamazoo River above Kalamazoo is derived from groundwater discharge, providing a stable baseflow all year in the river and most of its tributaries. This constant inflow of groundwater all year attenuates seasonal extremes of water temperature.

Such water budgets illustrate the long-term average water balance but do not provide a picture of the seasonal and longer-term dynamics of water movement through the landscape (Webster et al. 2006). Given the importance of groundwater flow paths and large volume of the groundwater reservoirs, travel times of ground water through these watersheds are undoubtedly long compared to watersheds in which overland flow is a more dominant route of water movement. Based on studies of similar terrain in southern Wisconsin, the groundwater discharged into streams is likely to have originated as infiltration of precipitation over several decades (Saad 2008, Rupert 2008). This means that contaminants in ground water turn over slowly, and the water quality impacts of land use practices will be slow to manifest themselves – but equally slow to diminish. Groundwater flow models based on well log and surface elevation data reveal flow directions and approximate travel times and can be valuable tools for management of groundwater resources and associated groundwater-dependent surface waters (Bartholic et al. 2007).

The Kalamazoo River Watershed is divided into sub-watersheds based on a system known as the Hydrologic Unit Code (HUC) (Figure 7).

Figure 7. Kalamazoo River Watershed 14 digit Hydrologic Unit Codes.

HUCs were developed by the United States Geological Society to delineate boundaries for watersheds. The United States is divided hierarchically into successively smaller units. The units are classified into six levels starting with large areas such as the Great Lakes Region (2-digit) down to small areas (e.g., 14-digit). The overall Kalamazoo River has an 8-digit HUC (04050003).

HUCs are used as a basis of organization by several different management agencies and are used in this plan to organize data and model portions of the watershed. HUCs arranged at the 10-digit level provide another useful spatial grouping that can include the 14-digit level subwatersheds (Figure 8).

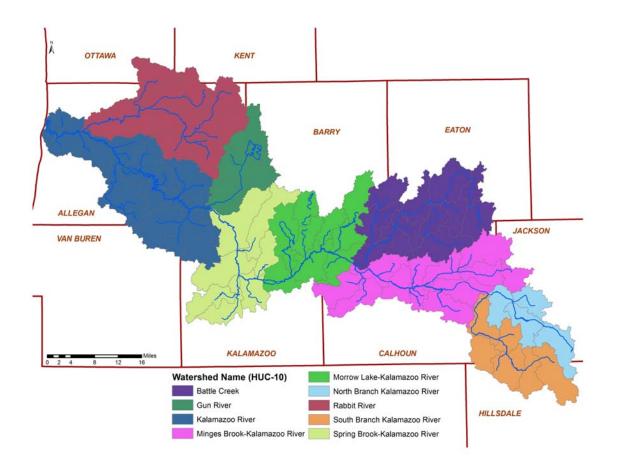


Figure 8. Kalamazoo River Watershed 10-digit Hydrologic Unit Code major subwatersheds (14-digit lines are also visible).

The crosswalk table (Attachment 2) contains HUC codes and additional information including how HUCs are grouped in different subwatershed management units (WMUs). Referencing Watershed Management Units (WMUs) are a convenient way to illustrate the interlinked nature of the many sub-watersheds — defined here as areas drained by a single waterway or watercourse (also see groupings in Figure 3 and Table 1). The WMU groupings are based on existing nonpoint-source watershed plans, stormwater plans, and phosphorus reduction plans that are maintained by and guide watershed partners in several sub-watershed areas or land management areas.

HUCs need to be interpreted with caution at the finest spatial scales. In glacial landscapes, watersheds delineated by topography alone may not accurately reflect groundwater flow directions, particularly at headwater stream locations and in relatively level terrain.

The concept of a stream flow regime embodies not only the annual range and average discharge but also the variation over a range of time scales. Stream flow regime is important to stream ecology, pollutant loading, and pollutant transport (Poff et al. 1997, Postel and Richter 2003). The most stable stream flow regimes are found in sub-watersheds where groundwater discharge is a high proportion of the flow, and these are

most common in the middle of the watershed. Streams draining less permeable, finetextured soils show less stable natural flow regimes. Stream flow regimes tend to be perturbed by several different human interferences. Agricultural tillage, urbanization, stream channelization, filling of wetlands, and installation of drainage systems for agriculture and urban development all contribute to stream flow instability. On the other hand, impoundments that create large reservoirs relative to stream discharge can attenuate flow variability.

Seasonal flooding occurs throughout the Kalamazoo River watershed, most often in late winter and spring, but most damage occurs to developments within the floodplain. Ice damming is often involved in floods that result in property damage. However, increasing urbanization, and the flashy runoff that accompanies impervious surfaces, can certainly aggravate flooding. In summer it may also cause undesirable inputs of warm runoff water to coldwater trout streams.

Analysis of hydrological time-series data detected increases in stream flashiness in several gauged watershed tributaries (Fongers, 2009, <u>http://www.michigan.gov/documents/deq/lwm-nps-kalamazoo_229438_7.pdf</u>). Changes in flashiness may be related to watershed land use conversion to agriculture and urban development. These research outcomes and management implications are further considered in later sections of the KRWMP and used to define watershed actions in critical areas.

2.3. Land Use and Cover

Land cover in the Kalamazoo River watershed is approximately 47% agriculture (dominated by corn and soybeans), 30% unmanaged terrestrial uplands (mostly secondary deciduous forest and successional old fields), 15% lakes and wetlands, and 8% urban. There is some tile drainage in the area but most agricultural land in the watershed is naturally well drained, and is neither tiled nor affected by artificial ditches (Schaetzl 2009).

The Integrated Forest Monitoring, Assessment, and Prescription (IFMAP) system is an inventory application being developed by the MDEQ to suitably inventory resource information in a GIS-based system that integrates with numerous other resource inventories used by the agency. The following analysis used the 2001 IFMAP map available from Michigan Geographic Data Library. This land cover data set was derived from analysis of Landsat satellite imagery and in the case of low density urban development it seems to provide a minimum estimate because homes among trees are often not detected. A map of land use and cover and summary tables shows the heterogeneous distribution throughout the Kalamazoo River watershed, and subwatersheds vary considerably in land use and cover (Figure 9; Tables 3 and 4).

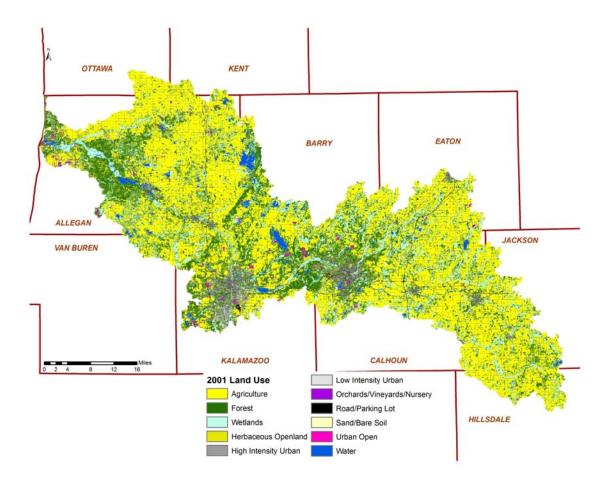


Figure 9. Land use and cover in the Kalamazoo River Watershed in 2001 based on data from the Integrated Forest Monitoring, Assessment, and Prescription (IFMAP) system.

Land use/land cover category	Area (acres)	% of the watershed area
Low intensity urban	29,786	2.29
High intensity urban	16,800	1.29
Transportation	49,803	3.82
Farmland	615,517	47.25
Open land/parks	117,511	9.02
Forest	275,574	21.15
Water	24,259	1.86
Forested wetlands	77,431	5.94
Non-forested wetlands	91,920	7.06
Sand/soil/bare	4,204	0.32
Total	1,302,804	100.00

 Table 3. Land use breakdown for the entire Kalamazoo River Watershed based on the data in Figure
 9.

Land use/land cover category	Battle Creek River	Rice Creek	Rabbit River	Portage-Arcadia	Mainstem 3 Corridor	Gun River	Greater Battle Creek	Four Townships Watersheds	Davis Creek
Low intensity urban	1.40	0.85	1.72	14.03	7.34	1.24	4.06	1.41	7.56
High intensity urban	1.07	0.32	1.31	5.92	5.04	0.99	2.22	0.43	9.14
Transportation	4.29	3.09	3.15	8.60	7.31	2.76	6.21	2.71	10.15
Farmland	51.60	55.81	61.61	18.08	24.24	47.53	29.14	44.46	38.90
Open land/parks	6.97	7.00	7.33	11.60	11.50	7.60	11.34	8.79	12.54
Forest	16.44	14.84	14.96	33.33	31.41	23.22	28.45	25.12	10.32
Water	1.10	0.42	0.59	1.73	2.67	5.23	1.32	4.82	0.53
Forested wetlands	8.22	7.42	3.85	3.04	5.41	4.39	8.34	4.46	5.84
Non-forested wetlands	8.48	10.19	5.02	3.36	4.53	6.62	8.31	7.70	4.01
Sand/soil/bare	0.43	0.05	0.46	0.31	0.55	0.42	0.60	0.09	1.03
Total	100	100	100	100	100	100	100	100	100

 Table 4. Land use breakdown for each major watershed management planning area (see Table 1) in

 the Kalamazoo River Watershed (percentage of subwatershed area).

Note: Some WMP areas overlap. The land use breakdown was calculated for each defined WMP area regardless of overlapping areas.

Three areas remain without a WMP (Figure 3). Zones A, B and C are respectively located in the west, center and east of the Kalamazoo River Watershed. Land use and cover in these zones is detailed in Table 5; they are dominated by farmland and forest cover.

Land use/land cover category	Zone A	Zone B	Zone C
Low intensity urban	1.7	0.7	1.0
High intensity urban	1.1	0.3	0.4
Transportation	3.3	2.3	3.1
Farmland	41.3	41.2	59.5
Open land/parks	11.3	8.7	7.7
Forest	24.9	25.7	14.9
Water	2.5	0.7	0.6
Forested wetlands	6.5	7.1	5.7
Non-forested wetlands	6.9	13.2	7.2
Sand/soil/bare	0.5	0.1	0.1

 Table 5. Land use breakdown for areas without a WMP in the Kalamazoo River Watershed

 (percentage of subwatershed area) .

Ninety-six percent of the land in the Kalamazoo River watershed is privately owned. The remaining 55,000 acres are publicly owned. Major public lands include Allegan State Game Area (48,000 acres), Fort Custer Recreation Area (3,000 acres), and about one-fifth of the Yankee Springs Recreation Area (1,000 acres; the remainder lies in the Grand River watershed) (Figure 10; See also Figure 9).

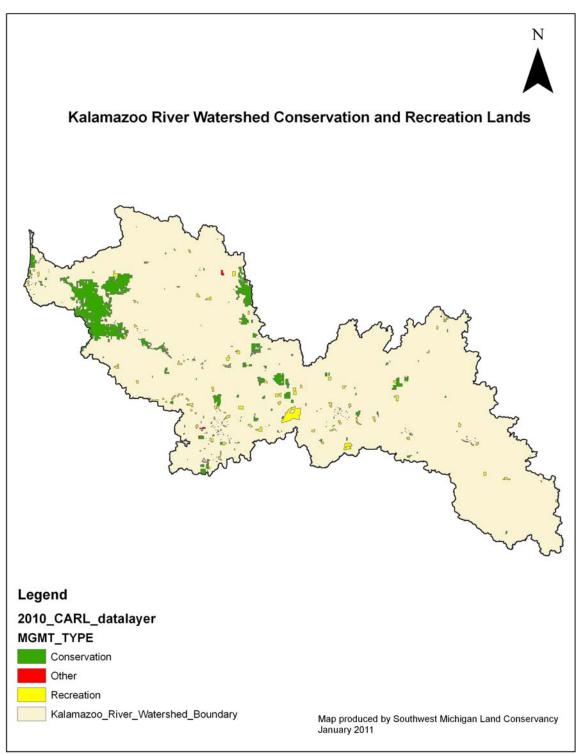


Figure 10. Conservation and recreation lands in the Kalamazoo River Watershed.

Most of the areas mapped in Figure 10 represent especially large tracts of contiguous unmanaged forests and fields with substantial wildlife and recreational values. Figure 10 includes smaller conserved land holdings and arrangements as well as compiled by the Southwest Michigan Land Conservancy, 2011. Land ownership along the mainstem of

the lower Kalamazoo River is approximately half public (particularly the Allegan State Game Area and Fort Custer State Recreation Area) and half private.

The watershed was originally covered with deciduous forest, interspersed with smaller areas of oak openings, prairie, and savanna. Most of the watershed was converted to agriculture during European settlement in the mid 1800s (Chapman and Brewer 2008). In recent decades row crop agriculture has been practiced on the more productive soils, while secondary forest has developed on much of the relatively marginal land that proved to be too sloping, excessively well drained (i.e., sandy), or poorly drained, and was therefore abandoned from agriculture during the 1900s.

2.4. The Kalamazoo River Mainstem

The following description of the main stem of the Kalamazoo River is distilled from Wesley (2005), where more detail including information on fisheries resources can be found.

The Kalamazoo River has a low to moderate stream gradient, dropping 540 feet in elevation from its headwaters on the South Branch (1,120 ft. above sea level) to Lake Michigan (580 ft. above sea level). Elevation at the headwaters of the North Branch is 1,042 ft. above sea level. The average drop in elevation over the 166 miles of main stem and South Branch is just over 3 feet per mile.

The North and South branches of the Kalamazoo River originate within a few miles of each other: the North Branch originating in Farewell and Pine Hills lakes in southern Jackson County and the South Branch rising in marshy areas south of Moscow in northeastern Hillsdale County. The two branches join at Albion, forming the main stem which flows northwesterly for approximately 123 miles before entering Lake Michigan near Saugatuck. Along the way, the river flows through several municipalities: Marshall, Battle Creek, Augusta, Galesburg, Comstock, Kalamazoo, Parchment, Plainwell, Otsego, Allegan, and Saugatuck, among which Battle Creek and Kalamazoo are the largest.

More than half the length of the mainstem between Albion and Ceresco (east of Marshall) is impounded by dams or heavily developed in the cities of Albion and Marshall. The mainstem of the Kalamazoo River from Ceresco to the southwestern edge of Battle Creek flows through scenic natural areas and includes several islands. The river is about 80-100 feet wide and averages 1-2 feet deep. Through Battle Creek and adjacent suburbs, the river is almost entirely within developed areas and has been diverted into a concrete channel in downtown Battle Creek to reduce flood hazard. Recent discussions with the City of Battle Creek and other parties have contemplated removal or naturalization of that concrete channel.

From Augusta to Galesburg there is little development, except in the villages. The Fort Custer State Recreation Area includes a natural reach of river and floodplain below Augusta, and there is also a tract owned by The Nature Conservancy. The river is wide and deep, averaging 110 feet wide and four feet deep. Between Galesburg and Comstock, the river flows into Morrow Lake, formed by an impoundment (Kilowatt Dam) now fitted with a privately owned hydroelectric dam. From this point, the river flows through more urbanized areas of Comstock and Kalamazoo. From Kalamazoo, the river flows north through natural and agricultural areas to Plainwell.

The river gradient increases to 2.6 feet per mile between Plainwell and Allegan. However the steepest drops are sites of old hydroelectric dams whose remnants remain today. The most upriver dam (Plainwell Dam) was breached in 2008, restoring relatively high-gradient riffle habitat. Three other dam sills remain in place above the city of Allegan (i.e., Trowbridge, Otsego Township, and Otsego City), where another old dam has been maintained and forms the pool along the downtown area.

From Allegan the river flows into Lake Allegan, created by the Calkins Bridge hydroelectric dam (managed by Consumers Energy and recently relicensed by the Federal Energy Regulatory Commission). Below this dam it flows through the most natural section of the river, within the Allegan State Game Area. A major tributary, the Rabbit River, enters the Kalamazoo at New Richmond.

Near the mouth of the Kalamazoo River there are extensive marshlands and an open harbor in the vicinity of Saugatuck and Douglas denoted as Lake Kalamazoo on some maps. Like many rivers entering the eastern side of Lake Michigan, the Kalamazoo River flows through a backflooded zone in its lowermost reach that reflects earlier downcutting of the river channel during a time of lower lake levels. This lake-like water body has been deepened somewhat by historical dredging to facilitate boat access, but constant sediment deposition tends to fill in the dredged areas. Local residents and businesses are advocating new dredging at the upstream end of the "harbor" there. The Kalamazoo River enters Lake Michigan through a dredged channel that passes the beach and adjacent sand dunes between sheet-pile training walls.

2.5. Dams and Reservoirs

There are 110 dams in the Kalamazoo River basin registered under MDEQ with 15 on the Kalamazoo River mainstem (See tables in Wesley, 2005). Some dams are classified by MDEQ Dam Safety Section according to their purpose: 4 for hydroelectric power generation, 11 retired hydroelectric dams, 60 for recreation (including lake-level control structures), 4 flood-control dams, 2 for water supply, and 30 for other reasons (private ponds, county park ponds, hatchery ponds, etc.). It is not known how many small unregistered dams exist in the basin. The Kalamazoo River dams are essentially "run-of-river" dams that do not change much in stored water volume over the seasons.

The first dams were built across small creeks at high gradient locations to power grain and saw mills. Construction of mill dams began in the 1830s and continued until 1900. From 1890 to 1940, several large dams were constructed to generate electricity. All of the larger and now retired hydroelectric dams were built between 1856 and 1906. These dams were originally made to power grain, saw, and paper mills and were later converted to generate electrical power. Because of their age and inefficiencies, these dams are no longer being used for power generation. The last phase of dam building was between 1945 and 1980; these dams were built to control lake levels for recreation and waterfront development. The dam that forms Morrow Lake near Comstock (Kilowatt Dam) is an exception and was originally constructed to create a reservoir to provide cooling water for a coal burning power plant. It was later retrofitted to produce a modest level of electric power.

Dams 6 feet or more in height and/or with impounding capacity at design flood elevation of 5 surface acres or more are regulated under Michigan's Dam Safety, Part 315 of the Natural Resources and Environmental Protection Act, 1994 P.A. 451 as amended; or the Federal Energy Regulatory Commission (FERC) Regulation 18 of Part 12 of the Code of Federal Regulations.

Dams have many detrimental affects on aquatic communities in rivers. They impede fish movements, fragmenting fish populations and blocking spawning migrations. Dams interrupt river systems and typically were built at high quality river habitat, turning it into lentic, or ponded, habitat. Some fishes and aquatic insects migrate up or downstream to reach different feeding and temperature habitats throughout the year. Mortality or injury can result while passing through dams, especially those with hydroelectric turbines. Entrainment often causes mortality or injury as a result of fish being struck by turbine blades, pressure changes, sheer forces in turbulent flows, and water velocity accelerations.

Impoundments that discharge water from the surface typically increase downstream water temperatures by spilling warm surface waters. This is especially critical in the warm summer months. Increased water temperatures can lead to elimination of certain aquatic species including fish. Evaporation rates increase with the higher temperatures and much greater impoundment surface area. Dissolved oxygen levels in impoundments are often lower than those in moving streams during warmer seasons, and this change can alter fish populations in impounded portions of a river system. However, in impoundments with longer water residence times (> one week), prolific growth of phytoplanktonic algae can result in elevated oxygen concentrations compared to the river (Reid and Hamilton 2007).

Impoundments also act as sediment and debris traps, and often contain historical accumulations of contaminated sediments. By far most of the PCBs within the Kalamazoo River system reside in sediment accumulations behind artificial impoundments, with the largest proportion in Lake Allegan.

Sediment-free water released below the dam has high erosive power causing increased scour and bank erosion. Woody debris is caught in impoundments and eventually sinks, depriving downstream segments of important fish habitat. Sediment and biotic materials in impoundments change the nutrient dynamics of flowing river systems. Water that slows down in reservoirs has time to grow algae that can reach undesirably high

abundance (Reid and Hamilton 2007). Historical loading of phosphorus to reservoirs can result in the release of phosphorus from the sediment up into the water column in a process known as internal loading (Baas 2009).

3. Community Profile

3.1. Synopsis of Regional History

Since 1975 Western Michigan University anthropologists have conducted field studies at many sites along the length of the Kalamazoo River to learn more about prehistoric human habitation. More than 400 separate sites were identified in Allegan County alone. Results of those studies show that humans have used the Kalamazoo River basin continuously for more than 11,000 years. Few permanent settlements, however, have been found along the river. Studies and historic written records indicate the area was used seasonally for hunting, fishing, and maple sugaring. It is thought that the basin did not have the kinds of soils necessary to encourage permanent settlements. However, from about 700 years ago, there was some farming by Native Americans.

Probably the earliest Europeans to glimpse the Kalamazoo River were Jesuit Priest Father Jacques Marquette and two companions as they were returning from visiting Indians in Illinois in 1675. Although other missionaries may subsequently have passed the mouth of the River, it wasn't until the late 1700s that the area was frequented by fur traders. By the early 1800s, there were several small communities along the River, including Kalamazoo. Farmers soon replaced fur traders and quickly populated much of the watershed. Many shipped their goods down the river on flat boats to Singapore, established at the mouth of the river in the 1830s. This "bustling port" was later buried by the shifting sand dunes and abandoned in the 1870s. With the introduction of the railroad in the 1840s, the importance of the river for transportation declined.

By the mid-1800s, several communities had grown up along the river as mill towns and commercial centers: Battle Creek, Kalamazoo, Parchment, Plainwell, Otsego, and Allegan. After the Civil War and into the 20th century, various industries, from cereal production to pharmaceuticals to automobile parts, flourished. Several communities became sites for paper production, locating plants along the river for water intake and waste discharge. De-inking practices (no longer in use) led to PCB contamination of the river. Sewage effluent, other industrial discharges, and trash also contributed to the pollution of the river. From the 1940s to the 1960s, the river was considered an "eyesore" and most people did their best to avoid it.

Beginning in the 1970s with the federal Clean Water Act, serious efforts were made to clean up the river. Although today the river is far cleaner, the persistent PCB contamination has led to Superfund designation of an 80-mile section from Kalamazoo to Saugatuck as well as a 3-mile section of Portage Creek, and the lower river has especially stringent advisories for fish consumption. More details on the PCB contamination and efforts to address it are provided in Section 5 of this Plan.

A massive oil spill was discovered in late July 2010, the result of a pipeline rupture in a small tributary of the Kalamazoo River known as Talmadge Creek, southwest of the City of Marshall. The pipeline is managed by Enbridge Energy Partners LLC. Up to a million

gallons of tar-sands crude oil escaped, much of it entering the Kalamazoo River below Marshall, contaminating a 30-mile reach that was in excellent ecological condition. The magnitude of this oil spill makes it possibly the largest ever experienced in the Midwestern U.S.

The river level was unusually high at the time, resulting in the spread of oil onto river banks and into expansive floodplain wetlands. The most heavily oiled river banks and floodplains were upriver of Battle Creek, but oil also contaminated the river downstream to the upper end of Morrow Lake. The emergency response, coordinated mainly by Enbridge and EPA, successfully contained the oil above the remaining 80 miles of river (and Lake Michigan). The first response was to contain the oil as it moved downstream. Around 3,000 animals, mostly turtles but also geese and other water birds and some mammals and snakes, were collected, cleaned and released or maintained in captivity over the winter. Surprisingly, there were no significant fish kills.

Over the 3 months following the spill, hundreds of boats and thousands of workers deployed booms and removed oil-contaminated sediment and vegetation over the 30 miles of river and floodplain. The Talmadge Creek corridor was almost completely excavated, with clean fill returned to more or less re-create the original wetland surface and stream channel. Specific locations along the entire impact zone with the heaviest oil contamination have been excavated; mostly these have been low-lying islands but a few low spots on the floodplains also required excavation. In certain areas such as behind dams and in off-channel oxbows and coves, oil was found to rise to the surface when the sediment was disturbed, indicating that significant oil was in the sediment. Those areas were either aerated to float the oil and collect it (most places), or dredged (Ceresco Dam reservoir upstream of Battle Creek). Enbridge states that more than 90% of the oil in the river has been recovered, mostly by using booms and vacuum suction, although this remains to be verified.

The longer-term remediation and restoration of the oil-affected reaches is expected to take several years. Shoreline stabilization has been implemented, and planting of native species of plants will commence during 2011. Currently, the MDEQ is negotiating the remediation and restoration plan with Enbridge. Meanwhile, as of December 2010 there were still some emergency cleanup actions taking place. Unknown at this time are the chronic impacts of the oil spill, either from the short-term exposure of long-lived wildlife or from residual petroleum or heavy-metal contamination in the river and its floodplain. There is no doubt that the cleanup activities had substantial environmental impact in and of themselves, including the removal of vegetation and the destabilization of river banks and sediment deposits, and these impacts may persist for some time.

The Kalamazoo River Watershed Council was named as one of the "Assisting Agencies" under the "Unified Command" led by the EPA and Enbridge to respond to the spill, and as such we were represented at all public meetings and at stakeholder and agency briefings. We have closely tracked the spill response and contributed numerous technical suggestions based on the experience of our Board and our familiarity with the river and

floodplain ecosystems. We have also been involved in outreach activities, including public talks and presentations to schools and community groups.

3.2. Governmental and Political Structure

The watershed is located in portions of 10 counties, 19 cities, 11 villages and 107 townships. This diversity of governmental jurisdictions presents a challenge for integrated water management (Table 6).

Table 6. Political boundaries	within the Kalamazoo R	iver Watershed.
Tuble of Tollical boundaries	within the isunana200 is	iter tracerblica.

POLITICAL BOUNDARY TYPE COUNTIES	NAME Allegan Barry Calhoun Eaton Hillsdale	Is entire jurisdiction in KZ watershed? N N N N N N N N	If not, area of watershed within the jurisdiction boundaries (acres) 399,699.16 115,655.08 311,010.29 83,145.81 46,741.43
	Jackson Kalamazoo	N	100,224.41 202,845.82
	Kalallazoo	N	8,689.11
	Ottawa	N	14,681.60
	Van Buren	N	20,224.66
	Vui Durch		20,221.00
TOWNSHIPS	OTTAWA COUNTY		
	Jamestown Twp	N	12584.23138
	Park Twp	N	too small
	Zeeland Twp	N	1797.74734
	ALLEGAN COUNTY		
	Leighton Twp	N	19,026.16
	Fillmore Twp	N	2,097.37
	Overisel Twp	N	11,086.11
	Dorr Twp	Ν	21,872.59
	Salem Twp	Y*	22,771.47
	Laketown Twp	Ν	4,943.81
	Wayland	Y	
	Wayland Twp	Y	
	Manlius Twp	Y*	23,820.15
	Heath Twp	Y	
	Hopkins Twp	Y	
	Monterey Twp	Y	
	Saugatuck	Y	
	Village of Douglas	Y	
	Saugatuck Twp	N	13,932.54
	Fennville	Y	

POLITICAL BOUNDARY TYPE	NAME	Is entire jurisdiction in KZ watershed?	If not, area of watershed within the jurisdiction boundaries (acres
	Martin Twp	Y	
	Watson Twp	Y	
	Allegan Twp	Y	
	Allegan	Y	
	Clyde Twp	Ν	4,644.18
	Valley Twp	N	21,123.53
	Ganges Twp	N	149.81
	Gunplain Twp	Y	
	Otsego Twp	Y	
	Otsego	Y	
	Trowbridge Twp	Y	
	Lee Twp	N	24,719.03
	Cheshire Twp	Ν	17,677.85
	Plainwell	Y	
	BARRY COUNTY		
	Thornapple Twp	N	3,595.49
	Yankee Springs Twp	Ν	11,685.36
	Maple Grove Twp	N	5,842.68
	Hope Twp	N	149.81
	Orangeville Twp	Ν	16,629.16
	Assyria Twp	Y*	22,921.28
	Johnstown Twp	Ν	10,037.42
	Barry Twp	N	20,973.72
	Prairieville Twp	Y	
	CALHOUN COUNTY		
	Clarence Twp	N	20,524.28
	Lee Twp	Y	
	Convis Twp	Y	
	Pennfield Twp	Y	
	Bedford Twp	Y	
	Battle Creek	Y	
	Marengo Twp	Y	
	Springfield	Y	
	Emmett Twp	Y	
	Marshall	Y	
	Albion	Y	
	Sheridan Twp	Y	
	Marshall Twp	Y	
	Albion Twp	Y*	21,273.34
	Eckford Twp	Ν	15,131.04
	Fredonia Twp	N	7,640.43
	Newton Twp	N	4,943.81
	Leroy Twp	N	12,134.79
	Homer Twp	N	19,026.16

POLITICAL BOUNDARY TYPE	NAME	Is entire jurisdiction in KZ watershed?	If not, area of watershed within the jurisdiction boundaries (acres)
	EATON COUNTY		
	Carmel Twp	N	10,187.23
	Kalamo Twp	N	3,146.06
	Eaton Twp	N	7,940.05
	Charlotte	N	1,947.56
	Hamlin Twp	N	too small
	Brookfield Twp	N	17,977.47
	Walton Twp	Y	
	Bellevue Twp	N	20,374.47
	Olivet	Y	
	HILLSDALE COUNTY		
	Somerset Twp	N	2,097.37
	Moscow Twp	N	19,925.03
	Scipio Twp	N	17,078.60
	Litchfield Twp	N	5,393.24
	Litchfield	N	299.62
	Wheatland Twp	Ν	299.62
	Adams Twp	Ν	2,097.37
	Fayette Twp	Ν	1,048.69
	JACKSON COUNTY		
	Springport Twp	Ν	5,692.87
	Sandstone Twp	Ν	too small
	Parma Twp	N	15,880.10
	Spring Arbor Twp	N	7,490.61
	Concord Twp	Y	
	Liberty Twp	Ν	1,348.31
	Hanover Twp	N	22,621.65
	Pulaski Twp	Y	· · · · · ·
	KALAMAZOO COUNTY		
	Richland Twp	Y	23,670.34
	Cooper Twp	Y	23,370.72
	Ross Twp	Y	25,018.65
	Alamo Twp	Y*	22,172.22
	Charleston Twp	N	17,827.66
	Comstock Twp	N	22,471.84
	Kalamazoo Twp	Y	6,891.36
	Kalamazoo	Y	16,928.79
	Parchment	Y	599.25
	Oshtemo Twp	N N	13,932.54
	Galesburg	Y	1,048.69
	Climax Twp	N N	299.62
	Pavilion Twp	N N	3,745.31
	Portage	N N	11,984.98
	Texas Twp	N N	12,434.42

POLITICAL BOUNDARY TYPE	NAME	Is entire jurisdiction in KZ watershed?	If not, area of watershed within the jurisdiction boundaries (acres)
	KENT COUNTY		
	Byron Twp	N	5,992.49
	Gaines Twp	N	1,647.94
	VAN BUREN COUNTY		
	Pine Grove Twp	N	16,479.35
	Bloomingdale Twp	N	2,996.25
	Gobles	N	149.81
VILLAGES	Hopkins	Y	
	Martin	Y	
	Homer	N	149.81
	Bellevue	Y	
	North Adams	N	299.62
	Springport	Y	
	Parma	N	149.81
	Concord	Y	
	Hanover	Y	
	Richland	Y	
	Augusta	Y	
CITIES	Wayland	Y	
	Saugatuck	Y	
	Village of Douglas	Ŷ	
	Fennville	Y	
	Allegan	Y	
	Otsego	Ŷ	
	Plainwell	Y	
	Battle Creek	Ŷ	
	Springfield	Y	
	Marshall	Ŷ	
	Albion	Y	
	Charlotte	Ν	1,947.56
	Olivet	Y	7
	Litchfield	N	299.62
	Kalamazoo	Y	
	Parchment	Y	
	Galesburg	Y	
	Portage	N	11,984.98
	Gobles	N	149.81

Note: Y* a very small area is not in the watershed

The political geography of the Kalamazoo River watershed is also complex. All or part of three U.S. Congressional districts (Figure 11), several State Senate districts (Figure 12), and several State Representative districts (Figure 13) are included in the watershed.

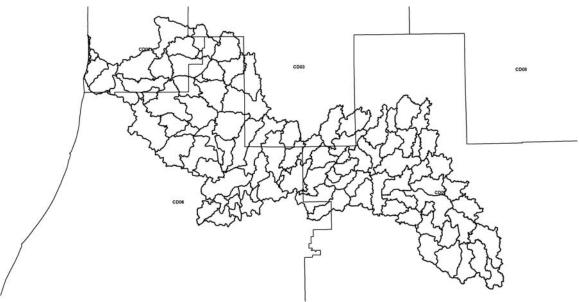


Figure 11. Congressional districts.

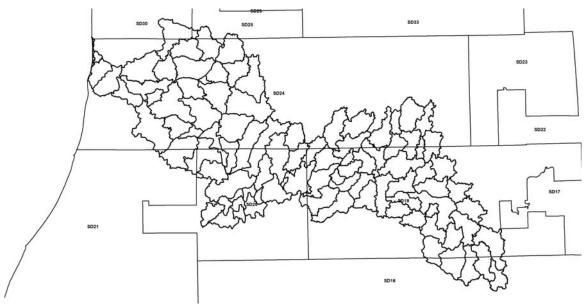


Figure 12. State Senate districts.

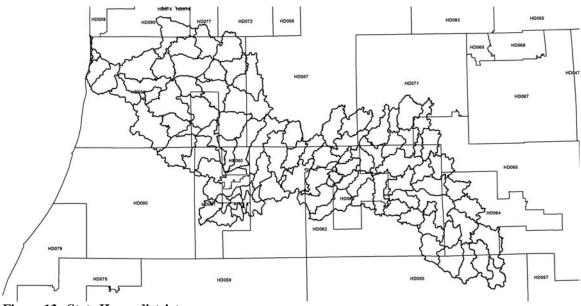


Figure 13. State House districts.

There are 18 circuit court judges, 20 district court judges, and nine probate court judges serving the area. Because parts of ten counties are in the watershed, there are 10 prosecuting attorneys, sheriffs, county clerks, registers of deeds, and treasurers serving the watershed. Each county, city, village, and township also has elected officials, as well as several regulatory and advisory agencies and boards, such as the drain commissioner, health department, planning divisions, and zoning commissions.

3.3. Urban and suburban centers and industrial activity

While land use is predominantly rural and agricultural, the largest urban areas are located along the river corridor and thereby have a disproportionate impact on water quality. However this also means that the river provides a natural resource in close proximity to people who can enjoy it, offering not only recreation and education but the potential for waterfront redevelopment and enhancements such as trailways.

There is a mix of light and heavy industry in the watershed with large and small firms providing diverse products and services, including pharmaceuticals (Pfizer and Perrigo being particularly notable), cereal and other food products, printing and packaging, automobile and aircraft parts, and office furniture. Most are centered in larger population areas, although some are located in small cities and villages. Major commercial areas (retail shopping centers, restaurants, and other consumer services) are centered in the three largest cities: Battle Creek, Kalamazoo, and Portage.

Heavy industrial activity has declined in the last two decades, including the closure of most of the paper plants along the river. This in turn has significantly reduced point-source inputs of wastewater to the river, but also has left local communities to struggle with a diminished local tax base and abandoned industrial properties and legacy pollutants along or near their riverfronts.

3.4. Agriculture

Row-crop production predominates in the watershed. Major grain crops include corn, soybeans, wheat, and oats. Considerable land is also used for pasture and growing alfalfa. Major fruit crops include apples, peaches, pears, blueberries, and strawberries, located mainly in the western part of the watershed. Specialty crops/products include maple syrup, honey, wines and fruit juices, bedding plants, nursery stock, and Christmas trees. Dairy and beef cattle, sheep, and pigs are also raised in the watershed. Poultry farms produce chickens, turkeys, and eggs. Animal agriculture is increasingly concentrated in large-scale operations.

3.5. Demographics, Future Growth and Development

Approximately 400,000 people live in the watershed, with most concentrated in the metropolitan areas of Kalamazoo and Battle Creek. Other population centers (year 2000 census figures in parentheses), in addition to Kalamazoo (72,161) and Battle Creek (52,777), include Portage (45,236), Albion (9,144), Marshall (7,459), Plainwell (9,933), Otsego (3,933), and Allegan (4,838). There are both urban and rural minority populations, including African Americans and Hispanics. Native American communities are located in Allegan and Calhoun Counties.

The watershed encompasses all or part of 31 public school districts, all or part of four community college districts (Jackson, Kellogg, Kalamazoo, and Grand Rapids), one public university (Western Michigan University), and four private colleges (Albion, Kalamazoo, Miller, and Davenport).

The watershed has abundant natural and water resources that attract businesses, residents and recreationists. Drastic economic contraction has occurred across the State of Michigan entailing significant manufacturing job losses. However, over the next few decades, the watershed is expected to see population growth and continued land use change, especially from expanding urban areas. By comparing the rate of land consumption to population growth, the Michigan Land Resource Project found that from 1980 to 1995, land was consumed at a rate eight times the rate of population increase in Michigan (MLULC, 2003). A significant economic shift has been underway toward a service economy, though opportunities to transition to a low carbon/new energy economy are poised to lead to manufacturing expansion in the alternative energy and advanced transportation sectors. Still, the region's strongest sectors in general have been agriculture and tourism, both of which ultimately rely heavily on the maintenance of sustainable soils, water, and other natural resources.

The KRWMP planning process involved modeling future growth in the watershed and relating that growth and land use change to future runoff conditions. See Attachment 3 and later sections of the Plan for more information and implications.

3.6. Outdoor Recreation

The Kalamazoo River watershed offers excellent opportunities for outdoor recreation that draw visitors from outside the watershed, particularly from neighboring states including the Chicago area. Yet the full potential value of outdoor tourism has yet to be tapped.

Campsites, ranging from rustic tent sites to modern trailer/recreation vehicle sites, are found in private and public campgrounds. Private recreational facilities provide a variety of services, including golf courses, archery ranges, horseback riding, boat and canoe rentals, marinas, Great Lakes charter boat services, fishing ponds, skiing, snowmobiling, and sledding. Several parks and launch sites allow direct access to the Kalamazoo River and its larger reservoirs.

Two state parks and a major state game area are located in the watershed. Fort Custer State Recreation Area, a 2,960 acre state park, is located on the Kalamazoo River between Kalamazoo and Battle Creek. Yankee Springs State Recreation Area, a 5,000 acre state park (of which about 1,000 acres are in the watershed in the Gun River subwatershed), is located northeast of Plainwell. The Allegan State Game Area, with 48,000 acres, is the largest state-owned area in the watershed and is traversed by the lower Kalamazoo River. Other state-owned recreational properties in the watershed include a portion of the Kal-Haven Trail Sesquicentennial State Park and several game areas. Fort Custer, Yankee Springs, and Allegan provide day-use and overnight facilities.

There are several major city and county parks. Major parks include Markin Glen, River Oaks, Coldbrook, Milham, Verberg, and Kindleberger parks in Kalamazoo County and Littlejohn Lake, Dumont Lake, and Oval Beach in Allegan County. City/village parks and river walks providing access to the riverfront are found in Albion, Marshall, Battle Creek, Kalamazoo, Parchment, Plainwell, Otsego, Allegan, and Saugatuck.

Michigan Department of Natural Resources (MDNR) access sites on the river are located at Morrow Lake in Kalamazoo County and at Lake Allegan, Allegan Dam, Palmer Bayou, Ottawa Marsh, New Richmond, Indian Point, and Lake Kalamazoo in Allegan County. Also, there are numerous MDNR boat access sites at lakes in the watershed.

In addition to the state parks and game areas described above, several other nature areas/preserves are found in the watershed. Sites with major visitor facilities include the W.K. Kellogg Biological Station (Michigan State University), the Kalamazoo Nature Center, and Binder Park Zoo in Battle Creek.

Multi-use, non-motorized trailway mileage is increasing rapidly in several watershed areas with the expansion of trails like the Kalamazoo River Valley Trail. Often, land trails parallel river valley corridors, sometimes at the site of old rail lines, providing numerous opportunities for land and water intersections. Volunteers in the Kalamazoo River watershed are gradually implementing a Michigan Heritage Water Trail on the mainstem of the Kalamazoo River from Calhoun County to the Lake Michigan shore, with coordination by the KRWC. Volunteers expect that additional trail signage and mapping will follow in select tributary corridors.

Mainstem Kalamazoo River fishing continues to improve, particularly for smallmouth bass. Numerous headwater tributaries support trout and are some of Michigan's southernmost trout streams owing to the high degree of groundwater input that maintains cooler water temperatures in the summer.

4. Natural Features and their Protection

Relatively natural forest, wetlands, and grasslands abound in the Kalamazoo River watershed because of its overall rural nature, the abundance of isolated wetlands that could not be drained for agriculture, and the widespread abandonment of agricultural activity on more marginal lands that were too sloped, erosion prone, or sandy. In addition, the broad floodplains of the Kalamazoo River valley have returned to a more natural state in many reaches. These natural features, together with land that is still in agriculture, provide important ecosystem services that are often underappreciated, including recreational opportunities, maintenance of groundwater recharge, clean water, wildlife habitat, and biodiversity.

This chapter is not meant to be a comprehensive inventory of natural features in the watershed but rather a broad overview with emphasis on features of importance for watershed management and protection such as large land holdings important for the maintenance of biodiversity.

We are fortunate to have a wide array of protected areas in and near the Kalamazoo River watershed. Cumulatively, 71,205 acres in the watershed are categorized as conservation and recreation lands, of which 56,047 are protected conservation lands according to the 2010 CARL and National Conservation Easement databases maintained by Ducks Unlimited. These areas can be organized into two categories: State of Michigan conservation lands, such as, state game areas and state parks; and land that is protected by county and local governments and conservation organizations such as land trusts. Substantial State of Michigan owned land includes but is not limited to the Allegan State Game Area, Fort Custer State Recreation Area, Yankee Springs State Recreation Area, and the Barry State Game Area. The Fort Custer Training Center is a large area of largely forested military land adjacent to the Fort Custer State Recreation Area <u>http://www.dnr.state.mi.us/parksandtrails/Details.aspx?id=448&type=SPRK</u> and it is increasingly managed to protect and enhance natural features as well as for its training mission.

Areas under protection by municipalities and conservation organizations such as the Michigan Nature Association and the Southwest Michigan Land Conservancy account for 11,807 acres in the watershed. In many cases, these areas contain natural features of particular functional and hydrological importance to the Kalamazoo River. The Southwest Michigan Land Conservancy (SWMLC) serves the nine county region of southwest Michigan by acquiring and protecting natural areas and open space through gifts, purchases of land, and through conservation easements; providing programs and sites for outdoor recreation, nature study and the appreciation of history; and assisting individuals and organizations who want to protect ecologically significant land. The Michigan Nature Association also conserves land and manages several preserves in the watershed.

In 2014, SWMLC and KRWC, partnered with a team of graduate students lead by Dr. J. David Allan from the University of Michigan to create a strategic conservation plan for the Kalamazoo River Watershed. The partners convened a group of more than 40 local experts to develop a list of criteria that would help identify high quality land in the watershed that, if protected from development and degradation, would best protect water quality. The final criteria included: land use; wetlands; proximity to water bodies and conserved lands; presence of cold water streams; and threatened or endangered species. Then, based on these criteria, the team undertook a geographic information systems (GIS) analysis to prioritize the lands in the Kalamazoo River watershed based on their conservation value. The analysis yielded a unique numeric conservation value for each parcel in the watershed. The results of the analysis were separated into three tiers of priorities. Tier 1 represents land parcels scoring in the 90th percentile and above, Tier 2 represents parcels scoring in the $80^{th} - 89^{th}$ percentile, and Tier 3 represents parcels scoring in the $70^{th} - 79^{th}$ percentile based on conservation value.

The partners then ranked individual subwatersheds based on the concentration of Tier 1 parcels. With input from local natural resource professionals, these subwatersheds were grouped into eight priority areas for land conservation. The landscapes in these areas are extremely diverse, with everything from forested floodplains to prairie fen wetlands to coldwater trout streams. Figure 14 shows the subwatershed areas that have been prioritized for land conservation to best protect water quality throughout the watershed. The priorities include:

Pottawatomie Marsh

Before draining into Lake Michigan, the Kalamazoo River flows through a large wetland complex and forms Kalamazoo Lake. Marshes in this area serve as important habitat for waterfowl and migratory birds. This area is also notable for its remarkable, yet fragile, sand dunes. Protecting land in this area is important to conserving large tracts of wetland and paleodune habitat.

Swan Creek & Lake Allegan

Swan Creek flows north into the Kalamazoo River below the Lake Allegan dam. The headwaters area consists primarily of farmland, with the downstream portion of the creekshed permanently conserved

and surrounded by the Allegan State Game Area and designated as a Natural River under the Natural Rivers Act.

Pine Creek

This small creek is located at the intersection of Kalamazoo, Van Buren, and Allegan Counties and flows north into the Kalamazoo River, downstream of Otsego. Land use consists of small headwater lakes, with associated wetlands surrounded by farmland. The creek's documented fish community has remained unchanged for over 50 years with some natural reproduction of brown trout in the headwaters.

Fish Lake Area

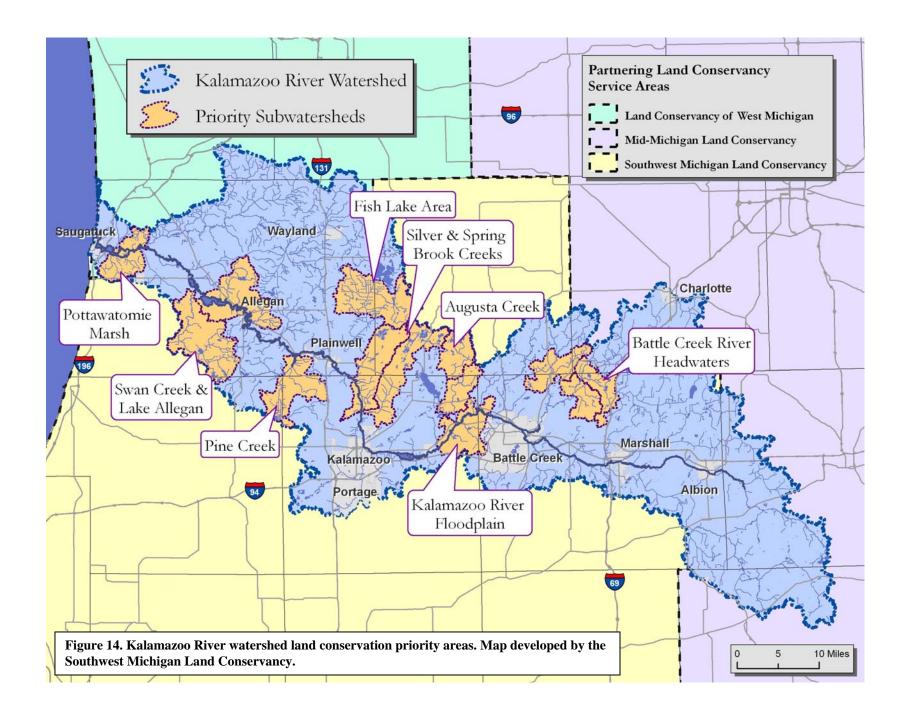
Set in Barry County, this small creekshed contains the Fish Lake section of the Barry State Game Area that flows west into Gun River. While most of the Gun River watershed consists of agriculture, pockets of important wetlands and forested floodplain can be found around Fish Lake. Much of the area has natural land cover and a variety of unique plant and animal species.

Silver Creek & Spring Brook

Silver Creek and Spring Brook are two separate - yet adjacent tributaries - to the Kalamazoo River, located in the corner where Allegan and Kalamazoo Counties meet. Both are recognized as high quality trout streams with top- quality coldwater designation. The headwaters are a combination of fallow farmland and scrub shrub wetland; the lower reaches are dominated by active farmland and the Kalamazoo River floodplain.

Augusta Creek

This spring-fed creek flows south through Barry and Kalamazoo counties on the eastside of Gull Lake, a primarily rural area dotted by residential homes, conserved parcels of land, and agricultural fields. Augusta Creek contains a rich diversity of habitats, especially wetlands, and a variety of rare and uncommon plants and animals – including at least 16 different species of fish, two of which are species of greatest conservation need, the lake chubsucker and the tadpole madtom. A focus for conservation, over 1,800 acres have been conserved between MSU, DNR and SWMLC.


Kalamazoo River-Augusta Floodplain

In this central region, the floodplain consists of large tracts of land containing a mix of agriculture and riparian forest and wetlands adjacent to the Fort Custer State Recreation Area, one of the largest tracts of protected land in the watershed. The forested floodplain is documented as extremely botanically diverse and is essential for flood storage.

Battle Creek River Headwaters

This headwaters area includes Ackley Creek, Big Marsh Lake, Wanadoga Creek & Clear Lake. The area boasts numerous lakes and wetlands, including Big Marsh Lake, home to a sandhill crane migration stopover site that is largely protected by Michigan Audubon's 898-acre Bernard W. Baker Sanctuary. Portions of Wanadoga Creek and the area surrounding Clear Lake have tracts of undeveloped forests and wetland complexes. Wanadoga Creek is characterized as a cool to cold water system supporting mottled sculpin, blacknose dace, and white sucker.

These areas present significant opportunities to expand existing conserved lands and protect additional biologically and ecologically diverse resource areas that protect water quality and water quantity. The long-term sustainability of the river will be dependent upon the quality of its contributing waters. Protecting critical areas where the opportunity exists is a proactive strategy to fulfill the objectives of this watershed management plan, including non-point source pollution reduction. As has been demonstrated with other water management plans, the process of prioritizing natural land for conservation is a valuable first step to focusing efforts in the areas that have the greatest impact to water quality and quantity in the watershed.

There are a number of subwatershed conservation plans that were developed before the Kalamazoo River Watershed Land Conservation Plan. For example, in the Four Townships Water Resource Council (FTWRC) area in Northeast Kalamazoo County and Southeast Barry County, SWMLC worked with the FTWRC to protect Potential Conservation Areas (PCA's) identified through a 2005 Natural Resource Inventory¹. This plan identifies 20 PCA's in the Four Townships Watershed Area (note: the boundaries of this area have been expanded to align with hydrologic units in the region, now called the Augusta and Gull Creeks Watershed; a full <u>Watershed Management Plan was developed in 2011</u>). In 2010, the KRWC, SWMLC and the FTWRC completed a three year land protection project in the Prairieville Creek PCA, to protect 310 acres along a headwater stream of Gull Lake in Barry County. And by 2015 an additional 499 acres of land were conserved within the subwatersheds of Augusta Creek and Prairieville Creek.

In 2009 SWMLC initiated a collaborative Strategic Conservation Plan with the MDNR, Barry Conservation District, Michigan Audubon, Pierce Cedar Creek, MSU Extension, Barry County Planning and Land Information Services Department and Potawatomi RC&D to conserve wildlife habitat and water resources within and adjacent to the 22,000 acre Barry State Game Area and Yankee Springs Recreation Area. This state resource area is located within the Thornapple River and Gun River watersheds, with conservation plan priorities of protecting additional land adjacent to the Fish Lake section of the SGA which flows into the Gun River and land around Gun Lake.

Several other subwatershed management or conservation groups have identified high quality areas within separate plans or reports where land protection measures could protect water quality. It is important to note while this watershed management plan identifies priority subwatersheds for land conservation, high priority parcels were identified throughout the entire watershed. Conservation of these parcels is still extremely important when it comes to protecting local water resources. As such, local land management, resource managers, and policy makers can use the results of the GIS model within their own jurisdictions to better understand local priorities. The results of the GIS analysis in the Kalamazoo River Watershed Land Conservation value on a very fine scale down to the parcel level. Local groups can use the model results to identify individual properties with high conservation value and begin conservation discussions with specific landowners. The GIS model data is available upon request by contacting the Southwest Michigan Land Conservancy (conserveland@swmlc.org, www.swmlc.org).

It is important to note the wellhead protection areas designated throughout the watershed, as the land conservation plan did not take into consideration groundwater protection as one of the ranking criteria. In general, groundwater protection zones fall within urbanized or suburban areas, which were not included in the land conservation model. The municipalities in the watershed that serve as a public water supply have groundwater protection areas and most have specific ordinances with special rules meant to protect drinking water aquifers. The two largest municipalities that provide public drinking

¹ http://ftwrc.org/publications.htm

water are the cities of Battle Creek and Kalamazoo. Their ground water protection areas are included in Figures 15 and 16.

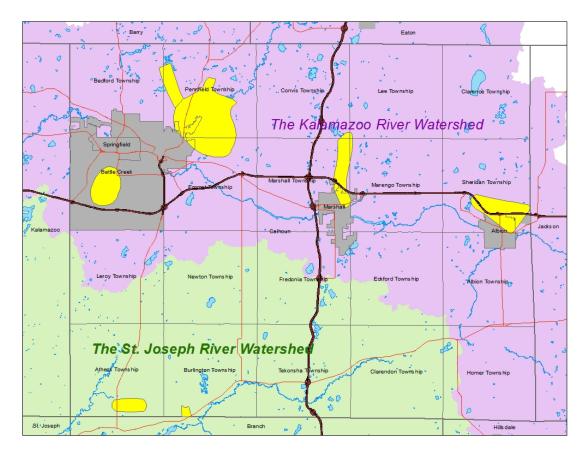


Figure 15. Wellhead protection zones in Calhoun County outlined in yellow.

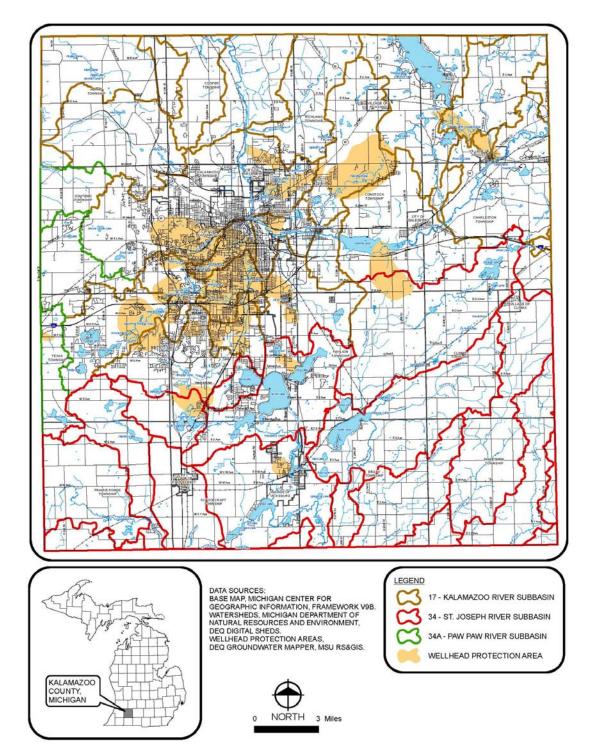


Figure 16. Wellhead protection zones in Kalamazoo County outlined in orange.

The lower Kalamazoo River (below Lake Allegan) was designated a Michigan Natural River in 1981, and a management plan was prepared by the Department of Natural Resources in 1981 and revised in 2002 (http://www.michigan.gov/dnr/0,1607,7-153-

<u>30301_31431_31442-95805--,00.html</u>). The designation also includes the lower 17 miles of the Rabbit River and several miles of lesser tributaries.

4.1. Terrestrial Ecosystems

There are four broad classes of terrestrial vegetation communities in the watershed. While each is a distinct plant community, there are many transitional zones (ecotones) that exist between these communities. Some of the dominant species are found in many different communities and may be prevalent in more than one area.

- Dry Southern Hardwood Forest Forests of dry upland sites with burr oak, black oak, or white ash dominating
- Moist Southern Hardwood Forest Forests that occur in richer and moister soils and are dominated by beech and sugar maple
- Wet Lowland Forest Forests characterized by willow or cottonwood, or bottomland floodplain forest including sycamore, silver maple and ash
- Grassland-Savanna Complex Includes the combination of prairies, sedge meadows and savannas, characterized as treeless or with scattered trees and dominated by grasses or sedges either wet or dry (Chapman and Brewer 2009).

In the Michigan Natural Features Inventory (March 1994) for Allegan and Kalamazoo counties, several distinctive plant communities of particular conservation interest are listed:

- Allegan County Dry Sand Prairie, Dry-Mesic Northern Forest, Dry-Mesic Southern Forest, Great Lakes Marsh, Interdunal Wetland, Lakeplain Wet-Mesic Prairie, Mesic Southern Forest, Oak Barrens, Open Dunes, Prairie Fen
- Kalamazoo County Coastal Plain Marsh, Mesic Prairie, Mesic Southern Forest, Prairie Fen, Southern Floodplain Forest, (note: mesic is a habitat with well-drained soils, but with an ample amount of moisture; a fen is a wetland with saturated muck soils, receiving groundwater inputs that are neutral to strongly alkaline).

The watershed has oak savanna and prairie remnants. Southwest Michigan is part of the tallgrass prairie region dominated by grasses such as big bluestem and Indian grass. The tallgrass prairie vegetation sometimes reached a height of 10 feet or more. Oak savannas, characterized by a grassy prairie-type ground cover underneath an open tree canopy, are common in areas that border the prairies. Prairies and oak savannas are fire-dependent systems.

Oak savanna and prairies support many species such as the Eastern box turtle and the Great Plains spittlebug. These systems in the watershed also support plants that are rare in Michigan and indicative of high-quality savannas, including rattlesnakemaster, prairie coreopsis, sand grass, and black haw.

Wildlife is abundant throughout the watershed. An inventory of animals of the Allegan State Game Area, included in a 1992 master plan for the area, listed 235 bird species, 45 mammal species, 19 amphibian species, 76 fish species and 23 reptile species. Important resident game species include the white-tailed deer, cottontail rabbit, fox squirrel, gray squirrel, raccoon, ring-necked pheasant, ruffed grouse, bobwhite quail, and wild turkey. Beavers are common along most watercourses and in smaller streams and wetlands they often make their presence known by their constant hydraulic engineering.

Important species of waterfowl, commonly taking up summer residence, include the mallard duck, black duck, wood duck, Canada goose, blue-winged teal, and American coot. Others, found only during spring and fall migration, include the blue goose, whistling swan, redhead duck, canvasback, goldeneye, American merganser, bufflehead, lesser scaup, American gallinule, Wilson's snipe, baldpate, pintail, and green-winged teal. The American woodcock is a migratory forest species.

4.2. Streams and Rivers

Streams are important for their intrinsic aesthetic, recreational, and ecological values in addition to being conduits of water and, potentially, of pollutants (Table 7).

Waterbody	Miles
North Branch Kalamazoo River	28.0
South Branch Kalamazoo River	43.0
Rice Creek (North and South Branches)	29.5
Wilder Creek	10.5
Seven Mile Creek	4.0
Wabascon Creek	16.0
Battle Creek River	46.0
Wanadoga Creek	12.0
Indian Creek	9.0
Big Creek	6.0
Augusta Creek	15.0
Gull Creek	8.0
Davis Creek	6.0
Arcadia Creek	2.5
Portage Creek (includes West Branch)	18.5
Pine Creek	6.0
Baseline Creek	4.0
Sand Creek	4.0
Spring Brook	6.0
Gun River	13.0
Miner Creek	7.0
School Section Creek	3.0
Schnable Brook	4.0
Swan Creek	16.5
Bear Creek	6.5
Sand Creek	3.5
Mann Creek	6.0
Rabbit River	46.5
Little Rabbit	14.0
Red Run Drain	7.0
Black Creek	15.0
Miller Creek	7.0
Miller Creek	3.5
Silver Creek	2.0
Green Lake Creek	7.0

Anecdotal evidence indicates that streams and rivers in the watershed are probably in better ecological condition today than during much of the past 150 years. In larger rivers, the control of point-source inputs of sewage and industrial waste has vastly improved water quality. In smaller streams improvements in recent decades are largely explained by changes in land use; most low lying areas close to the stream channels were once used for agricultural purposes but have been left alone in recent decades as local agriculture has become more focused on row crops in the upland areas. The natural floodplains along the streams and rivers are becoming reforested, providing a buffer against surface runoff and soil erosion and stabilizing the stream channels. The maintenance of these riparian buffer areas in the face of future pressures for residential development will be important to protect stream water quality.

Coldwater streams, which are tributaries with particularly high rates of groundwater input, are a unique natural feature providing important spawning habitat and thermal refuge for coldwater aquatic species including trout (Summarized in Wesley, 2005 Table 7 and Figure 30). The Kalamazoo River contains some of the southernmost trout streams in the Midwest U.S (Figure 17).

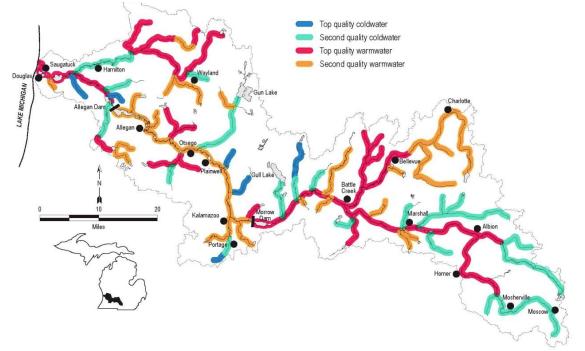


Figure 17. Michigan Department of Natural Resources, Fisheries Division, stream classification, 1964 (from Wesley, 2005).

4.3. Lakes

The aesthetic and recreational values of lakes are widely recognized by residents in the watershed. The larger lakes are popular sites for seasonal and year-round residences, and those with public access also draw visitors from outlying areas to use the lakes for recreational purposes. Protection of the water quality of these lakes is therefore of paramount interest. There are also many smaller, shallow lakes that become filled with plant growth during the summer. These shallower lakes may not be suitable for motorized boating, but they have significant ecological and aesthetic values and can be excellent for angling. The diversity of lake types in the watershed is associated with a diversity of aquatic plant and animal life as well.

There are about 2,450 lakes and ponds totaling 37,500 acres scattered across the watershed, ranging in size from Gun Lake (Allegan/Barry Counties) at 2,611 acres and Gull Lake (Kalamazoo/Barry Counties) at 2,040 acres, to numerous smaller lakes and

ponds. There are 52 lakes or impoundments of 100 acres or more in area. A summary by county is shown in Table 8.

County	Number of Lakes over 100	Total Surface Area (acres)
	Acres	
Allegan	17	5,510
Barry	11	5,560
Kent	0	0
Calhoun	12	2,360
Eaton	1	130
Hillsdale	0	0
Jackson	2	340
Kalamazoo	9	3,880
Ottawa	0	0
Van Buren	0	0

Table 8. Major lakes in the Kalamazoo River Watershed.

Threats to lake environments are primarily related to shoreline development and land uses. Residential development around lakes with no connection to municipal wastewater treatment facilities can, but won't necessarily always, increase nutrient levels and bacteria counts in the lake. Proper maintenance of home septic systems and care with the use of fertilizers are especially critical in the vicinity of water bodies. With residential development and associated roads and yards, coarse woody material abundance and shoreline habitat diversity strongly decline while nutrient loading often increases.

Human activities negatively affect inland lake ecosystems through alterations in water quality and physical habitat. For example, increased nutrient loadings from lawn fertilizers can increase algae and aquatic vegetation to nuisance levels and decrease concentrations of dissolved oxygen when excess algae and vegetation decompose. In addition, the quantity and quality of physical habitat available to fishes in the area between high and low water marks is altered by removal of coarse woody debris, by an increase or decrease (via chemical or mechanical removal) of aquatic plants, and by homogenization of the shoreline through erosion control efforts (e.g., rip-rap and sheet piling). Such changes in water quality and habitat features have been shown to negatively impact fish growth, limit natural reproduction of certain fish species, and reduce fish species richness while shifting assemblage structure towards more tolerant species.

4.4. Wetlands and Floodplains

Wetlands

Wetlands are increasingly appreciated for the functions, values, and ecosystem services that they provide to society, and as a result a variety of federal and state legislation has been enacted to protect these ecosystems. Michigan has lost more than half of its

wetlands to land drainage and conversion to agricultural, suburban, and urban uses. Widespread wetland destruction has resulted in increased flood damages, increased soil erosion, degraded fisheries, degraded water quality, and losses of wildlife and recreational opportunities. While legislative protection has now slowed the loss of wetlands due to outright drainage and filling, scientists are realizing that many wetlands are still being degraded by more insidious threats, such as non-point-source pollution and the invasion of exotic plants. Also, legislation does not provide protection to smaller isolated wetlands of less than 5 acres, which are common in many areas of the watershed.

Wetlands play an important role in the maintenance of good water quality, especially where they lie along lakes and streams because these can intercept groundwater discharge and surface runoff flowing towards surface waters, retaining nutrients, sediments, and contaminants from the water. Wetlands are particularly effective in removing nitrate, which is increasingly found at undesirably high concentrations in local groundwater aquifers. Riparian wetlands help to attenuate floods, as discussed earlier with regard to streams, thereby stabilizing stream channels and reducing property damage downstream.

In 2006, the MDEQ started using the Landscape Level Wetlands Functional Assessment (LLWFA) to classify existing and historic wetlands by the specific functions they perform within the landscape. These include water quality related functions wetlands provide us, such as floodwater storage, maintaining stream flow in creeks, holding back sediments, nutrient transformation, shading streams, and stabilizing shorelines to abate erosion problems. The LLWFA also identifies wetlands that provide good wildlife-related functions, such as fish, waterfowl and amphibian habitat. The State will soon make the LLWFA information available as an online mapping tool. Users will be able to zoom into a particular area and find an individual wetland of interest. By clicking on the wetland, the tool will list thewater quality and wildlife functions that the wetland performs. The user will be able to identify historic wetlands that have been filled or drained and no longer provide the functions they once had in the past.

The MDEQ completed the LLWFA for the entire Kalamazoo River Watershed in 2015 and is currently working to get the results incorporated into the online wetlands mapper. If you would like a copy of the results before they are available online, request a copy from Jeremy Jones at jonesj28@michigan.gov. The results can be used to identify priority areas in the watershed where specific wetland functions have been lost. This information is useful for the purposes of land use planning, zoning, land protection, and local policy making. The data can be used when considering restoration options for local areas with specific water quality or quantity issues. Local policy and zoning decisions could be informed by the LLWFA data. For example, a local planning commission might modify zoning maps based on LLWFA data showing an existing wetland that provides flood water storage or wildlife habitat. In addition, the LLWFA is a powerful tool for wetland restoration and can be used to develop specific outreach strategies to local landowners that might be interested in restoring wetlands on their property. The overall watershed results of the LLWFA have been summarized in Attachment 14. Figure 18 shows the wetlands that have been lost to development and drainage within the watershed. Many of these areas were originally drained for agriculture and some are still farmed while others have been abandoned. These historic wetlands were delineated using pre-settlement land surveys recorded by the General Land Office. Current wetlands were delineated using a modified version of the National Wetlands Inventory (NWI). The MDEQ modified the NWI through a systematic analysis of all wetland polygons and identified specific features that indicated the function of each polygon based on its location in the landscape and relationship to waterbodies. The full description of the methodology used to develop the LLWFA can be found in the *Landscape Level Wetlands Functional Assessment Methodology Report* (download).

The LLWFA data for the entire watershed is summarized by subwatershed in Figure 18 and comes from tables developed by MDEQ in Attachment 14.

Function	Potential Significance	Pre-Settlement Acreage	2005 Acreage	% Change in Acreage
Flood Water Storage	High	120,944.44	92,122.41	-24
	Moderate	114,346.46	21,935.92	-81
	Total	235,290.90	114,058.33	-52
Streamflow Maintenance	High	167,282.68	108,097.00	-35
	Moderate	59,877.37	45,967.34	-23
	Total	227,160.05	154,064.34	-32
Nutrient Transformation	High	163,773.13	125,598.07	-23
	Moderate	89,735.14	32,427.72	-64
	Total	253,508.26	158,025.79	-38
Sediment and Retention of Other Particulates	High	126,936.35	66,555.34	-48
	Moderate	60,731.24	46,021.82	-24
	Total	187,667.60	112,577.17	-40
Shoreline Stabilization	High	105,871.26	80,076.54	-24
	Moderate	97,145.53	51,111.14	-47
	Total	203,016.79	131,187.68	-35
Fish Habitat	High	226,081.09	91,291.31	-60
	Moderate	9,807.37	46,830.56	378
	Total	235,888.47	138,121.87	-41
Stream Shading	High	38,182.76	25,649.55	-33
	Moderate	10,458.96	8,727.48	-17
	Total	48,641.72	34,377.03	-29
Waterfowl/Waterbird Habitat	High	38,494.63	65,039.85	69
	Moderate	72,768.85	59,746.52	-18

Table 9. Detailed functional comparisons of pre-settlement and 2005 (current) wetland acreage.

	1			1
	Total	111,263.48	124,786.37	12
Shorebird Habitat	High	0.00	1,778.45	Null
	Moderate	247,089.27	153,935.10	-38
	Total	247,089.27	155,713.55	-37
Interior Forest Bird Habitat	High	59,087.49	43,686.75	-26
	Moderate	179,086.83	63,910.00	-64
	Total	238,174.33	107,596.76	-55
Amphibian Habitat	High	118,071.67	49,254.05	-58
	Moderate	23,202.06	20,679.05	-11
	Total	141,273.74	69,933.10	-50
Carbon Sequestration	High	21,297.18	15,641.39	-27
	Moderate	140,505.31	47,917.40	-66
	Total	161,802.49	63,558.80	-61
Ground Water Influence	High	26,864.72	3,674.53	-86
	Moderate	200,788.19	152,833.60	-24
	Total	227,652.92	156,508.12	-31
Conservation of Rare & Imperiled Wetlands & Species	High	Null	57,424.82	Null
	Moderate	Null	78,130.31	Null
	Total	Null	135,555.13	Null

Figure 18 (previous page). Kalamazoo River wetland restoration areas (red) are wetlands that existed prior to settlement and development of the watershed in the early 1800s. Areas in green represent the current wetlands that exist within the watershed.

The power of the LLWFA tool is to give local decision makers and conservation organizations specific data on wetland function, as opposed to using just the number of acres of restored wetlands as a means for targeting efforts. Table 10 shows the predicted functional capacity that remains from current (2005) wetland acres. The percent of functions lost can be derived from this same table. While Tables 9 and 10 provide information based on the entire watershed, similar information can be found for individual subwatersheds in Attachment 14. The next step for this new data will be to set priorities for outreach and restoration at the subwatershed level down to HUC-14 watersheds and smaller.

Function	Pre-Settlement Functional Acres	2005 Functional Acres	Predicted % of Original Capacity Remaining	Predicted % Change in Functional Capacity
Flood Water Storage	356,235.35	206,180.73	58	-42
Streamflow Maintenance	394,442.73	262,161.35	66	-34
Nutrient Transformation	417,281.39	283,623.87	68	-32
Sediment and Other Particulate Retention	314,603.95	179,132.51	57	-43
Shoreline Stabilization	308,888.05	211,264.22	68	-32
Fish Habitat	461,969.56	229,413.18	50	-50
Stream Shading	86,824.49	60,026.58	69	-31
Waterfowl and Waterbird				
Habitat	149,758.11	189,826.21	127	27
Shorebird Habitat	247,089.27	157,492.00	64	-36
Interior Forest Bird Habitat	297,261.82	151,283.51	51	-49
Amphibian Habitat	259,345.41	119,187.15	46	-54
Carbon Sequestration	183,099.66	79,200.19	43	-57
Ground Water Influence	254,517.64	160,182.65	63	-37
Conservation of Rare & Imperiled Wetlands & Species	0	192,979.95	100	100

Table 10. Number, and avera	ge size, of wetlands area	per restoration rank.
	- ,	r

Prairie fens are geologically and biologically unique wetlands found only in the glaciated Midwest. In Michigan, they occur in the southern three to four tiers of counties. Fens are wetlands characterized by high rates of groundwater through-flow, and in southern Michigan that groundwater is typically rich in dissolved ions including calcium, magnesium and bicarbonate. Typical plants found in prairie fens are switchgrass, Indiangrass, big bluestem, sedges, rushes, Indian-plantain, and prairie dropseed. The wettest part of a prairie fen, which is usually found near the water source, is called a "sedge flat" because members of the sedge family dominate the vegetation. The "fen meadow" often is the largest part and is more diverse with many lowland prairie grasses and wildflowers. Slightly elevated areas, especially around the upland edge, also support tamarack, dogwood, bog birch, poison sumac, and the invasive glossy buckthorn.

In the Watershed, prairie fens are commonly found along lakes and streams where groundwater discharges from adjacent uplands. They are particularly likely to exist where glacial outwash plains meet more elevated moraines or ice-contact ridges.

Current threats to wetlands include filling or draining to accommodate industrial, residential, agricultural or recreational land uses. Altered hydrology is a significant threat to most wetland types, whether it is due to a change in groundwater contributions to a fen or diversion of the water that feeds a swamp or marsh due to new road construction. Exotic species invasion, altered fire regime and polluted runoff with sediment, nutrients and chemicals also threaten wetlands.

Floodplains

A river, stream, lake, or drain may on occasion overflow its banks and inundate adjacent land areas. The land that is inundated by water is defined as a floodplain. In Michigan, and nationally, the term floodplain has come to mean the land area that will be inundated by the overflow of water resulting from a 100-year flood (a flood which has a 1% chance of occurring any given year). Often, floodplains are forested. These dynamic forested systems represent an interface between terrestrial and aquatic ecosystems and are extremely valuable for storing floodwaters, allowing areas for sediment to settle and providing wildlife habitat.

Current threats to floodplains include conversion to industrial, residential, or recreational uses, wetland or floodplain fill or drainage, exotic species invasion, chemical pollution, sedimentation, and nutrient loading from agriculture and other land uses. Almost all rivers and their floodplains are subject to multiple hydrologic alterations, such as changes in land use, human-made levees, impoundments, channelization, and dams.

4.5. Rare Features and Species

A variety of rare species and communities have been documented in the Watershed. The Michigan Natural Features Inventory (December 2009) for Allegan, Kalamazoo, and Calhoun Counties list plants and animals, occurring in these counties, considered endangered (in danger of extinction in the state), threatened (likely to become endangered in the foreseeable future), or of special concern (not threatened or endangered at present but could be in the future and should be monitored) under state statutes. Major watershed counties checked at <u>http://web4.msue.msu.edu/mnfi/data/county.cfm</u> include:

Allegan County -

State Endangered: 13
State Threatened: 48
State Special Concern: 47
State Extirpated (no longer found in the area): 2
Federal - Listed Endangered, 1; Listed Threatened, 1; Considered for Status, 1

Kalamazoo County – State Endangered: 19 State Threatened: 61 State Special Concern: 63 State Extirpated (no longer found in the area): 8 Federal - Listed Endangered, 2; Considered for Status, 1

Calhoun County State Endangered: 11 State Threatened: 21 State Special Concern: 29 State Extirpated (no longer found in the area): 4 Federal - Listed Endangered, 1; Listed Threatened, 2; Considered for Status, 1

Major threats to rare species and features include habitat loss and fragmentation and invasive species. As natural habitats become more fragmented and disrupted, invasive species can be accidentally or deliberately introduced into high quality habitat areas. Invasive species can displace or eliminate native species, particularly rare species that have specific habitat requirements. Invasive species can substantially alter the structure and functioning of high quality natural communities including an alteration of the amount of water that is infiltrated.

4.6. Invasive species (aquatic and wetland)

Invasive species are a particular concern in lakes. An especially notorious aquatic invasive species is the zebra mussel. Through human activity such as boating, zebra mussels have the potential to spread. Zebra mussels attach to any hard surface and can clog water intake pipes. They can become a nuisance on docks and piers and they may compete with resident aquatic species that filter algae and zooplankton for food. Zebra mussels can cause local extirpation of native mussel species through suffocation and starvation. Eurasian milfoil and curly leaf pondweed are two widespread nuisance plants in lakes. Boats and trailers can transfer these species to water bodies, so special care should be taken by boaters to limit the possibility.

5. The legacy of contaminated sediments

Discharges into the Kalamazoo River from some paper industry recycling processes created very serious contamination problems prior to the 1970's. The primary contaminant is a class of synthetic industrial compounds called polychlorinated biphenyls (PCBs), a hazardous substance and probable human carcinogen. PCBs were introduced to Portage Creek and the Kalamazoo River through disposal of PCB-contaminated paper residuals and associated drainage. The disposal areas (now often referred to as landfills) are situated on the river banks and contain millions of cubic yards of PCB-contaminated waste. The contaminated sediments were largely deposited in Kalamazoo River impoundment areas downstream of source areas (e.g., Plainwell Dam, Otesgo City and Township Dams, Trowbridge Dam, and Calkins [Lake Allegan Dam].

The contaminated area still includes three miles of Portage Creek from Cork Street just above Bryant Mill Pond in the city of Kalamazoo, to its mouth at the Kalamazoo River, and from Morrow Dam on the Kalamazoo River for 80 miles downstream to Lake Michigan.

PCB discharges have been essentially eliminated because of a ban on their production and other regulatory point source controls, but large amounts of uncontrolled contaminants are still present in and near portions of the river channel in the lower Kalamazoo River valley floodplain. It has been estimated that the river sediments contain more than 120,000 pounds of PCBs within millions of cubic yards of contaminated sediment, soils, and paper residuals. This site is being addressed through federal, state, and responsible parties' actions.

Relation to nonpoint source runoff

Contaminated sediment issues are exacerbated by unstable watershed hydrology that typically leads to flashiness, causes excess in-stream erosion, and stresses dams. Failing and partially demolished dams also resulted in eroding, contaminated streambanks in former impoundments. The river channel re-cut behind several dams after the sill levels had been lowered leading to additional contributions of contaminated sediment. Atmospheric transport of PCBs, as well as other persistent organic pollutants, is an ongoing source of pollution to all surface water bodies and complicates the understanding of background levels of PCB pollution. In addition, stormwater runoff can carry pollutants sourced from deteriorating infrastructure (e.g., leaking storage containers), from atmospheric deposition on to the land, and from contaminated surface soils.

5.1. PCBs in the river system and food webs

PCBs in the sediments accumulate and can "biomagnify" in the food web. Fish, being several links up the food chain, may have high concentrations of contaminants in their bodies. Older fish often have the highest concentrations. Humans are exposed to PCBs by eating contaminated fish and wildlife. Federal and state fish consumption guidelines establish an action level of 2 mg/kg total PCBs in edible portions of fish tissue. PCB

concentrations in fillets of many species of fish from Portage Creek and the Kalamazoo River typically exceed this threshold. The Michigan Department of Community Health has issued fish consumption advisories for the Kalamazoo River and Portage Creek for many years and maintains a fish consumption guidebook (<u>http://kalamazooriver.org/eat-safe-fish-guide/</u>), although paper copies are no longer widely distributed due to funding limitations.

There are several ways (exposure pathways) humans can be exposed to PCBs in water and sediment. PCBs in the river are almost entirely bound to sediment and soil particles, and are not usually present at levels of concern in the water unless contaminated sediments have been disturbed and suspended in the water. Therefore, PCB concentrations in surface waters generally do not exceed levels at which increased health risks would be incurred. Skin contact with water in the Kalamazoo River is not expected to result in a notably increased health risk to humans. Even occasionally swallowing water from the Kalamazoo River, as when falling out of a boat, should not put anyone at increased risk from PCBs.

Since most contaminated sediment remains too wet to become airborne, inhalation of airborne particles would not result in a significant amount of exposure to PCBs. Health risks attributable to this pathway are highly unlikely. At this time there are no known sites in the Kalamazoo River (other than Superfund landfills which have been fenced off from the general public) where typical activities would provide sufficient skin contact with PCB-contaminated soil or sediments to result in increased health risks. The public has raised concerns, however, that sediment is very easily suspended in the water by swimmers, power boats, flooding, and windy weather, and young children frequently swallow water while swimming.

Among stations for which total PCB loading rates were estimated, the lower Kalamazoo River contributed 16 kg/year in 2005 (Aiello, 2006). Despite evidence that water column PCB concentrations in the lower Kalamazoo River are generally the highest in the State of Michigan, agencies have not recommended human contact restrictions and recent reviews conclude that normal recreational activity on the river is safe.

The Kalamazoo River Watershed Council (KRWC) asked the Michigan Department of Community Health (MDCH) to evaluate the health hazards from the PCBs present in the water and sediment of the Kalamazoo River. Following the KRWC's review of the then available public health assessment, the Council requested responses to specific questions regarding dermal contact with and incidental ingestion of water and sediments during recreational use of the river. In response, the MDCH, in consultation with the federal Agency for Toxic Substances and Disease Registry (ATSDR) investigated risks associated with ingestion of water and sediment associated with recreational activities. Their investigations found that there is no apparent health hazard regarding dermal contact with or incidental ingestion of water and sediments during recreational use of the river.

The Kalamazoo River Human Health Risk Assessment (MDEQ, 2003) was conducted to identify potential risks and hazards associated with exposures to PCBs released into the Kalamazoo River system. Section 3.2 of the Kalamazoo River Human Health Risk Assessment for the river, as it relates to contact with surface water, states:

"During hunting or fishing activities, contact with river surface water and sediment may occur. Contact with surface water and sediment may also occur during other recreational activities such as swimming and boating. In general, contact with sediment and surface water does not result in significant risks or hazards. This assumption is consistent with the findings presented in Health Consultation for Allied Paper / Portage Creek / Kalamazoo River (MDCH 1997). In that document, it is stated that "moist sediments might adhere more strongly to skin than drier soil, but river water would tend to wash the sediments off before the soiled skin reaches the mouth or food." In addition, the quantity of water consumed during swimming has been estimated to be significantly less than that consumed when water is used for drinking water (50 milliliters/hour, which is a typical swimming event versus 2 liters/day) (EPA 1989, 1992). For this reason, the ingestion of surface water is not considered a significant pathway."

Finally, current and future Superfund remedial activities along the Kalamazoo River and Portage Creek are expected to disturb substantial sediment. Controls are required that minimize the risk of significant downstream transport of re-suspended contaminated sediments. Guidelines are in place to reduce the impact of downstream transport of contaminated sediments should site monitoring indicate that turbidity and PCB water column exceedances are occurring. Evidence from routine up- and downstream sampling during recent removal of contaminated river sediments near Plainwell indicates that engineering controls successfully prevented significant downstream transport of PCBs associated with disturbed sediments (contact the KRWC).

The Natural Resource Damage Assessment, written by the resource Trustees, concisely documents contaminant concentrations in surface water, sediment, soils, fish and wildlife and provides background on the history of the site

(http://www.fws.gov/midwest/es/ec/nrda/KalamazooRiver/index.html). The Trustee agencies for this NRDA are the U.S. Fish and Wildlife Service, the Michigan Department of Environmental Quality, the Michigan Department of Natural Resources (added by Governor Granholm on September 29, 2004), the Michigan Department of the Attorney General, and the National Oceanic and Atmospheric Administration. The Trustees will determine the amount of restoration needed both to return the Kalamazoo River environment to what it would have been like if the contaminants had not been released and to compensate the public for the loss of use and enjoyment of their natural resources resulting from the contaminants.

5.2. Superfund

The Comprehensive Environmental Response, Compensation, and Liability Act -otherwise known as CERCLA or Superfund -- provides a Federal "Superfund" to clean up uncontrolled or abandoned hazardous-waste sites as well as accidents, spills, and other emergency releases of pollutants and contaminants into the environment. Through CERCLA, EPA was given power to seek out those parties responsible for any release and assure their cooperation in the cleanup. Through various enforcement tools, EPA obtains private party cleanup through orders, consent decrees, and other small party settlements. EPA also recovers costs from financially viable individuals and companies once a response action has been completed.

In June, 1990 the Michigan Department of Natural Resources notified three potentially responsible parties (PRPs), Allied Paper, Inc. (Millennium Holdings, LLC), the Georgia-Pacific Corporation, and Simpson Plainwell Paper Company (now Weyerhaeuser), of their intent to spend public funds to conduct a remedial investigation/feasibility study. In August 1990, the Allied Paper, Inc./Portage Creek/Kalamazoo River site was included on the National Priorities List, commonly known as Superfund. MDEQ was designated as the lead agency at that time.

The Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund site includes five disposal areas, five paper mill properties, an approximately 80-mile stretch of the Kalamazoo River from the Morrow Lake dam to Lake Michigan, and a three-mile stretch of Portage Creek (Figure 19).

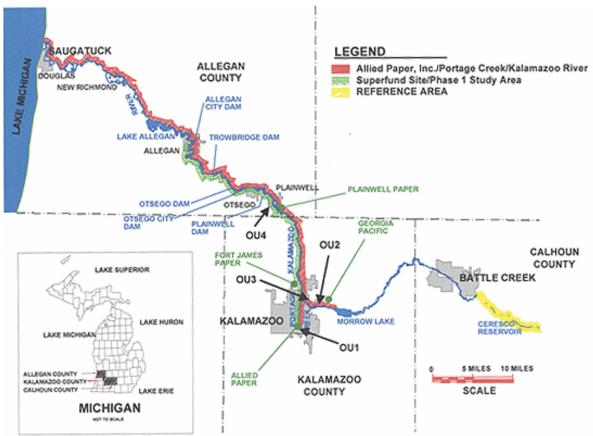


Figure 19. The Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund site. Red shaded areas indicate the extent of the entire site. Green shaded areas indicate an early management unit designation which has since been changed (see Figure 20).

At this time, the site is divided into five cleanup projects known as operable units (OUs):

- OU #1, Allied Paper Property/Bryant Mill Pond Area;
- OU #2, Willow Boulevard and A-Site Landfill;
- OU #3, Kings Highway Landfill;
- OU #4, 12th Street Landfill; and
- OU #5, the Portage Creek and Kalamazoo River sediments are further delineated into seven "areas" (Figure 20).

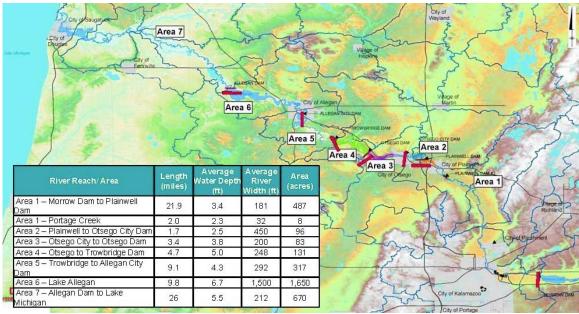


Figure 20. The seven areas of operable unit #5 of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund site.

EPA's cleanup approach for the Kalamazoo River is to first eliminate ongoing sources of PCBs to the river, which includes the exposed paper wastes along the river banks and flood plain soils (or impoundments), and then address in-stream sediments. The exposed paper wastes are particularly abundant behind State-owned and privately-owned dams along the river, where the formerly impounded areas allowed sediment to accumulate (these dams are taken down to their sills now). Before evaluating cleanup options for instream sediments, EPA will investigate upstream sources of PCBs and evaluate the existing landfill OUs and paper mill properties to ensure they are not a source of PCBs to the river. Generally, EPA's cleanup will begin upstream and work downstream on a reach-by-reach and dam-to-dam basis.

Several cleanup actions have occurred or are in process at source areas on or near the banks of Portage Creek and the Kalamazoo River.

EPA Cleanup status: http://www.epa.gov/region05/cleanup/kalproject/

In a bankruptcy court settlement in 2010, the company that was holding the Allied Paper properties and liabilities, Millennium Holdings, Inc., was dissolved when its parent company, Lyondell/Basell went through Chapter 11 bankruptcy, ultimately emerging and

continuing global operations. Financial liabilities were settled for the Allied Landfill property and cleanup obligations downstream of the Allied Site for approximately 10% of what Federal agencies estimated (according to court documents) was required for full river valley cleanup. Two viable responsible parties remain, Georgia Pacific and Weyerhaeuser.

Under the settlement the U.S. EPA has received about \$103 million total for cleanup of the Allied Paper/Portage Creek/Kalamazoo River Superfund Site. A custodial trust was established to take ownership and possession of environmentally contaminated properties owned by Lyondell or its affiliates. One of these properties is the Allied Paper Mill. Approximately \$50 million of the trust funds will be dedicated to the cleanup of the Allied Paper Mill. Additionally, the settlement requires Lyondell to pay approximately \$49.5 million to resolve liabilities at the Allied Paper/ Portage Creek/Kalamazoo River Superfund Site. The U.S. will also receive approximately \$3.2 million in payout on its allowed general unsecured claim against Lyondell/Millennium for the Allied Paper/ Portage Creek/ Kalamazoo River Superfund Site. The agreement relieves Lyondell/Millennium from any future financial responsibility at the Allied Superfund site. As of this writing and as far as the KRWC is aware, these funds have neither begun to be spent, nor has their use been more specifically allocated.

5.3. Area of Concern

In 1987, amendments to the Great Lakes Water Quality Agreement (GLWQA) were adopted by the federal governments of the U.S. and Canada. Annex 2 of the amendments listed 14 different beneficial use impairments (BUIs) which are caused by a detrimental change in the chemical, physical, or biological integrity of the Great Lakes system. The Annex directed the two countries to identify Areas of Concern (AOCs) that did not meet the objectives of the GLWQA. Remedial Action Plans (RAPs) addressing the BUIs were to be prepared for all 43 AOCs identified, including the Kalamazoo River. The BUIs provided a tool for describing effects of the contamination or other kinds of impairments, and a means for focusing remedial actions.

The KRWC, state, and federal agencies recognize the Area of Concern boundary as described below (Figure 21), although the KRWC feels that the "river" should include the 100-year floodplain and any former impoundment sediments that may lie above that level.

The Kalamazoo River AOC includes the lower portion of the river from Morrow Dam in Kalamazoo County near Galesburg to the mouth of the River in Allegan County at Saugatuck, as well as three miles of Portage Creek from its confluence with the Kalamazoo River (MDEQ, 2006a).

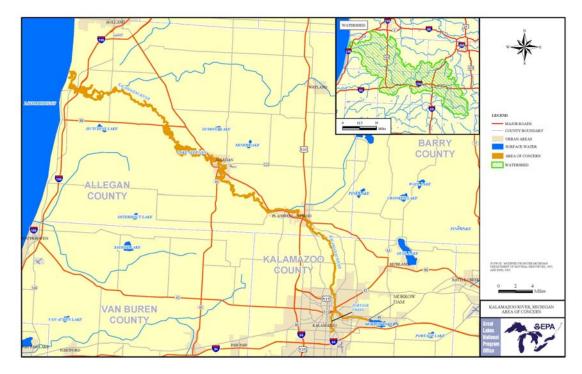


Figure 21. The Kalamazoo River Watershed Area of Concern extends along the river courses outlined in gold.

The Michigan Department of Environmental Quality (MDEQ) Remedial Action Plan (RAP) has recently been updated for the Area of Concern (AOC), and is the primary tool for documenting and communicating progress toward BUI removal and AOC delisting to the public and agencies. These processes and relevant restoration criteria are described in more detail in the MDEQ's Guidance for Delisting Michigan's Great Lakes Areas of Concern (Guidance) (MDEQ, 2008).

The purpose of this Kalamazoo River RAP update is to track progress in the AOC on remedial actions completed in recent years. This update discusses BUI assessment results that are based on the readiness of a BUI removal and subsequent technical committee review and recommendations. Comprehensive background information is provided in the 1987 and 1998 Kalamazoo River RAP documents (Michigan Department of Natural Resources [MDNR], 1987 and Kalamazoo River Watershed Public Advisory Council [Kalamazoo River PAC], 1998).

The future of the Kalamazoo River AOC is heavily dependent on ongoing PCB contamination assessment, risk-based PCB cleanup level establishment, legal settlements, and PCB cleanup activities associated with the Superfund and Natural Resource Damage Assessment (NRDA) processes. The Superfund and NRDA processes are regulatory programs with community involvement processes. These processes allow limited site specific input and influence by working groups of resource stakeholders involved in the non-regulatory programs (e.g., AOC program).

The AOC has eight BUIs determined under Annex 2 of the GLWQA, including: Restrictions on Dredging, Loss of Fish and Wildlife Habitat, Degradation of Fish and Wildlife Populations, Degradation of Aesthetics, Bird and Animal Deformities, Restrictions on Fish Consumption, Beach Closings, and Degradation of Benthos.

A Fish and Wildlife Advisory Team was created by the KRWC to use the process outlined in the Guidance to develop local restoration criteria for the Loss of Fish and Wildlife Habitat & Degradation of Fish and Wildlife Populations BUIs. The Kalamazoo River Area of Concern: Restoration Plan for the "Loss of Fish and Wildlife Habitat" and "Degradation of Fish and Wildlife Populations" Beneficial Use Impairments documents locally-established targets for the restoration of the Loss of Fish and Wildlife Habitat and Degradation of Fish and Wildlife Populations BUIs in the Kalamazoo River Watershed AOC. These BUIs relate to the physical degradation of fish and wildlife habitat and related fish and wildlife population reductions. The targets identified will be incorporated into the Kalamazoo River AOC Remedial Action Plan (RAP), maintained by the MDEQ Office of the Great Lakes. This is one step in a larger process, with the ultimate goal that all impairments (total of 8 for the Kalamazoo River AOC) will be restored, BUIs will be removed, and the AOC will be "delisted".

5.4. Overlapping Superfund and AOC Issues

The regulatory Superfund cleanup program and non-regulatory AOC programs have common issues. PCBs in sediments cause direct harm through the food chain and indirectly prevent the near term removal of failing mainstem river dams. Dam removal would lead to restoring high gradient river habitat currently buried in impoundments. In recent years, the KRWC has worked to maintain regular contact with Superfund, AOC, and NRDA parties with the expectation that these programs can complement one another and lead to faster, better cleanups, more habitat recovery, and more rapid progress toward removing BUIs and delisting the Kalamazoo River AOC.

5.5. Other trace contaminants

Dioxins and Mercury

At several sites throughout the watershed, dioxins have been documented in fish tissue at levels of potential concern for human consumption (MDNRE 2010). These locations show no obvious correspondence with current or former industrial activity. The causes and consequences of this apparent contamination of aquatic food webs remain to be discerned. Fish consumption impairments due to dioxin are listed in Table 14. Mercury also impairs fish consumption in most inland waters in Michigan and is sourced mostly from coal fired power generation facilities.

Over the past several decades, the MDEQ has implemented a variety of activities that include monitoring, regulations and policies for identifying, preventing, or eliminating the use and release of mercury, a toxic pollutant. The Mercury Strategy Workgroup (MSWG), consisting of MDEQ staff representing Air, Water, Waste, Pollution

Prevention, and Land Remediation, along with a representative from the Michigan Department of Community Health, has developed and released the Mercury Strategy Staff Report and its Appendices. Included in the report are 67 recommended action steps towards the goal of eliminating anthropogenic mercury use and releases in Michigan. Access the report at

http://www.michigan.gov/documents/deq/MDEQ_MSWG_FinalReportJan2008.pdf_222 256_7.pdf.

Heavy metals

Heavy metals are a common contaminant of concern at former industrial sites, landfills, and in urban soil in general. Though PCBs are the contaminant of concern in the Superfund and AOC designated areas, heavy metals are often cited as a concern by local communities, especially those with a history of manufacturing and heavy industry.

Crude oil and its components from the 2010 Enbridge pipeline release

The 2010 oil release into the Kalamazoo River was described in Section 3.1 above. As of this writing it is too early to determine the longer-lasting impacts of the oil, but they may well include sediments and soils contaminated with petroleum hydrocarbons as well as associated metals such as vanadium. The likely sites of contamination lie in a reach of river that was relatively clean before the oil release. Naturally it will be critical to carefully survey and monitor all potentially contaminated sites, and to take remedial action where deemed necessary and feasible.

6. Water Resource Management

Federal, state, county and local governmental units and their agencies have exclusive, or shared, responsibility for the management and protection of water, land and other natural resources. Local entities are obligated to comply with federal and state environmental statutes, county level ordinances and local ordinances. In the case of surface water protection, the federal and state laws generally provide a national or statewide strategy for water quality protection. Because of their broad-scale nature there are often gaps in protection efforts. This presents opportunities for county and local governmental units to enact ordinances or standards that will support a more comprehensive water quality protection strategy.

6.1. Watershed Management: Setting Boundaries

In addition to working within the jurisdictional structure of local governmental units, watershed management efforts have often been delineated along hydrological boundaries, which makes sense for water management. In most cases these watershed boundaries extend across townships, cities, and often counties, an unavoidable complexity but one that underscores the need to transcend traditional jurisdictional boundaries and instead take a landscape approach when dealing with our water resources. Figure 3 illustrates the spatial relationships of existing sub-watershed management areas, stormwater plans, and phosphorus reduction plans created and maintained by watershed partners.

6.2. Land Use and Water Quality

The quality of water and the ecology of lakes, rivers, streams and shorelines depend on the way land is managed, patterns of land use in relation to natural resources, and especially the way water is managed on a site. The authority to regulate land use rests primarily with local governments, largely through master plans and zoning ordinances. In addition, counties have the authority to enact ordinances that could affect the management of land. For example, several counties in Michigan have adopted phosphorus bans for lawn fertilizer. County, city, village, township and tribal governments all have a significant role to play in protecting water resources. This role becomes important where federal and state statutes and county ordinances fall short of the needed measures.

It is essential to plan for land uses with respect to existing natural features, soils and drainage patterns to lessen the impacts to water quality. Certain uses and activities should be located in areas where their impacts to water will be minimized. From a watershed perspective, land use will not only affect the immediate area, but also downstream areas and water bodies. "Downstream" often means a flow path from uplands to groundwater, streams, rivers and lakes.

Once the desired configuration of different future land uses (e.g., high density residential, low density residential, commercial, industrial, etc) is determined with respect to soils, natural features, water bodies and drainage patterns, appropriate planning can steer how the land is developed. Land development can have a significant impact on water quality. The impacts to water quality that commonly result directly from development activity – and increased drainage to support land development – can be minimized through the use of smart growth and low impact development techniques http://www.semcog.org/LowImpactDevelopment.aspx.

Best management practices (BMPs) are methods that have been determined to be the most effective, efficient and practical means of preventing or reducing pollution. Often BMPs to address non-point source pollution entail changes in the way people carry out traditional activities, for example in agriculture, forestry, mining and construction. The US EPA, working with partners in industry and the academic community, has established and published best management practices for soil erosion, stormwater treatment, fuel storage, pesticide and fertilizer handling and the management of livestock yards. Much useful information on BMPs can be found on web pages of the EPA http://www.epa.gov/ebtpages/pollbestmanagementpractices.html and Michigan DEQ http://www.michigan.gov/deqnps choose "Information & Education". Reference for a variety of agricultural BMPs are available at http://water.epa.gov/polwaste/nps/bestnpsdocs.cfm.

6.3. Regulatory Authority for Water Resources

The Michigan Department of Natural Resources and Environment regulates surface waters in the watershed based on the Natural Resources and Environmental Protection Act, PA 451, part 301 Inland Lakes and Streams. This statute regulates the dredging, filling, construction and any structural interference with the natural flow of a lake or stream. This act also regulates marina operations. Permits are needed for activities such as construction of docks or placing fill or structures in lakes and streams. The MDNR has the authority to regulate the number of boats and size of engines at public access sites if human health or protected species are being impacted. Cities, villages and townships can enact ordinances that further protect the water quality of lakes and streams. Model ordinances to protect water quality can be found at http://www.michigan.gov/deq select "water", "surface water", and then "storm water".

The MDEQ regulates any discharges to lakes or streams such as those from industrial operations or municipal wastewater treatment plants through the National Pollutant Discharge Elimination System (NPDES) program. For a listing of NPDES permits in the watershed see <u>http://www.michigan.gov/deqnps</u> choose "Information & Education". Furthermore, the MDEQ administers the municipal stormwater program, which requires owners or operators of municipal separate storm sewer systems (MS4s) in urbanized areas to implement programs and practices to control polluted stormwater runoff. Several municipalities in the Kalamazoo and Battle Creek Urbanized Areas are covered by MS4

permits. More information on this program is available at <u>http://www.michigan.gov/deq</u> select "water", "surface water", "storm water", and then "municipal program".

The approach to managing stormwater discharge in the general watershed permit involves protecting water quality and the downstream receiving waterbody channel. The water quality protection element requires a minimum treatment volume. The channel criterion requires a controlled release rate of stormwater. Most stream channel erosion occurs during extended bankfull flow conditions, not during extreme flooding. By controlling the release rate of stormwater, managers can avoid creating long periods of bankfull flow conditions downstream, thus preventing unnatural stream channel and bank erosion. Though most local governments are not stormwater permittees, their local ordinances, master planning, zoning, and development practices can use principals described in the 2008 watershed permit to protect valued local water resources (revoked in 2010). A selection of key elements of the general pemit is included here for consideration:

Post-Construction Storm Water Control for New Developments and Redevelopment Projects-The permittee shall develop, implement, and enforce a program through an ordinance or other regulatory mechanism to address post-construction storm water runoff from all new and redevelopment projects that disturb one (1) acre or more, including projects less than one (1) acre that are part of a larger common plan of development or sale that would disturb one (1) acre or more. The program shall include the following general requirements:

- A minimum treatment volume standard to minimize water quality impacts
- Channel protection criteria to prevent resource impairment resulting from flow volumes and rates
- Operation and maintenance requirements
- Enforcement mechanisms with recordkeeping procedures
- A requirement for the project developer to write and implement site plans, which shall incorporate the requirements of this section of the permit

The permittee shall establish structural storm water BMP design standards by meeting any of the following:

- The permittee identified in its application a schedule to develop and place in effect an ordinance or other regulatory mechanism that incorporates the minimum treatment volume standard and the channel protection criteria listed in a) and b) below.
- The permittee identified in its application for coverage under this general permit its applicable local ordinance or regulatory mechanisms that implement a standard for storm water treatment and criteria for channel protection that existed before the permittee submitted its application.
- The permittee identified in its application for coverage under this general permit the applicable local procedures that implement a standard for storm water treatment and criteria for channel protection that existed before submittal of its application, and these local procedures will be converted into an ordinance or other regulatory mechanism by the date specified in the certificate of coverage (COC) for storm water pollution prevention Initiative (SWPPI) submittal.
- The permittee submits with the SWPPI an alternative approach, such as design criteria based on low-impact development (LID), that provides at least the same level of water quality treatment and channel protection as a) and b) below, and the alternative is approved by the Department.
- Elective Option: The permittee identified in the application for coverage under this general permit that it will develop an ordinance or other regulatory mechanism to meet the following outcomes:
 - oA methodology and standard for treating water quality based on watershed priorities identified in the WMP

oCriteria for channel protection based on scientifically accepted morphological concepts

Any combination of existing regulatory mechanism or procedure, approved alternative approach, elective option, or adoption of an ordinance or regulatory mechanism in accordance with the requirements of a) and b) below, may be used to establish the necessary minimum treatment volume standard and channel protection criteria, provided that they are applied to all new developments and redevelopment projects as described at the beginning of this section. Amendments made to ordinances or other regulatory mechanisms do not have to be submitted to the Department if the amendments do not reduce the level of channel protection or water quality treatment that were provided prior to the amendment.

a) The minimum treatment volume standard shall be either:

- 1.One inch of runoff from the entire site, or ½ inch of runoff from the entire site if the permittee demonstrates technical support for it in the WMP, or
- 2. The calculated site runoff is from the 90 percent annual non-exceedance storm for the region or locality, according to (a) or (b) below, respectively.
 - a. The statewide analysis by region for the 90 Percent Annual Non-Exceedance Storms is summarized in a Department memo dated March 24, 2006, which is available on the Internet at: www.michigan.gov/deqstormwater; under Information, select "Municipal Program/MS4 Permit Guidance," then go to the Storm Water Control Resources heading.
 - b. The analysis of at least ten years of local published rain gauge data following the method in the memo "90 Percent Annual Non-Exceedance Storms" cited above. This approach is subject to approval by the Department.

Treatment methods shall be designed on a site-specific basis to achieve the following:

- A minimum of 80 percent removal of total suspended solids (TSS), as compared with uncontrolled runoff, or
- discharge concentrations of TSS not to exceed 80 milligrams per liter (mg/l).

A minimum treatment volume standard is not required where site conditions are such that TSS concentrations in storm water discharges will not exceed 80 mg/l.

b) The channel protection criteria established in this permit is necessary to maintain postdevelopment site runoff volume and peak flow rate at or below existing levels for all storms up to the 2-year, 24-hour event. "Existing levels" means the runoff flow volume and rate for the last land use prior to the planned new development or redevelopment. Where more restrictive channel protection criteria already exists or is needed to meet the goals of reducing runoff volume and peak flows to less than existing levels on lands being developed or redeveloped, permittees are encouraged to use the more restrictive criteria than the standard permit requirements.

More information on this program is available on the Michigan Department of Environmental Quality stormwater website <u>http://www.michigan.gov/deq</u> select "water", "surface water", and then "storm water".

Each county's Drain Commissioner is responsible for the administration of the Drain Code of 1956, as amended. The duties of the Drain Commissioner include the construction and maintenance of drains, determining drainage districts, apportioning costs of drains among property owners, and receiving bids and awarding contracts for drain construction. The Drain Commissioner also approves stormwater management in new developments and subdivisions and maintains lake levels where they have been legally established and control structures exist. The soil erosion and sedimentation program is housed in different departments depending on the county. The County Enforcement Agent for the soil erosion program has the responsibility of ensuring earth change activities that are one or more acres in area and/or are within 500 feet of a watercourse or lake do not contribute soil to water bodies.

Each county's health department is involved in several areas of nonpoint source controls: onsite wastewater treatment systems, septage waste hauling, monitoring residential wells, and operating a household hazardous waste program.

The State of Michigan recently implemented the groundwater withdrawal assessment tool as part of new rules related to the Great Lakes, under the Great Lakes - St. Lawrence River Basin Water Resources Compact. The Water Withdrawal Assessment Tool (WWAT) is designed to estimate the likely impact of a water withdrawal on nearby streams and rivers. The MDEQ and the Michigan Department of Agriculture monitor large-quantity groundwater use. All large quantity withdrawals, defined as having the capacity to withdraw more than 100,000 gallons of water per day average over any 30day period, equivalent to 70 gallons per minute pumping, must be registered and water use must be reported annually. The Comprehensive State Groundwater Protection Program is a statewide program that looks at groundwater uses, including drinking water, and its role in sustaining the health of surface water bodies (rivers, streams, wetlands, marshes). Use of the WWAT is required of anyone proposing to make a new or increased large quantity withdrawal (over 70 gallons per minute) from the waters of the state, including all groundwater and surface water sources, prior to beginning the withdrawal. One must use the WWAT to determine if a proposed withdrawal is likely to cause an Adverse Resource Impact, and to register the withdrawal.

Opportunities may exist for the development and implementation of planning tools that use the new online WWAT to prevent overuse of local GW resources and to avoid overuse of local aquifers, rather than entering into contentious negotiations and reallocation with other users in the event of overuse.

The Michigan Wellhead Protection Program is intended to protect the drinking water supply. The program minimizes the potential for contamination by identifying and protecting the area that contributes water to municipal water supply wells and avoids costly groundwater clean-ups. The following cities and villages in the Watershed participated in a local Wellhead Protection Program as of October 2008:

- Albion
- Allegan
- Augusta
- Battle Creek
- Bellevue
- Charleston Township
- Charlotte
- Concord
- Fennville

- Gobles
- Gun Plain Township-Lake Doster
- Kalamazoo
- Kalamazoo Lake Sewer and Water Authority
- Litchfield (Adams Field)
- Marshall
- Martin
- Pennfield Township North Acres
- Otsego
- Otsego Township
- Parchment
- Plainwell
- Portage
- Saugatuck Township
- Springport
- Wayland
- Yankee Springs Township

Watershed Based Permits

Federal and state regulatory programs are often using watershed-based permitting to achieve watershed management goals, particularly those that relate to nonpoint source runoff. In the Kalamazoo River watershed, two groups of NPDES stormwater permittees have organized themselves to communicate and coordinate their water quality efforts. One group is based around the Kalamazoo urbanized area and is referred to as the Stormwater Work Group. The second is based around the Battle Creek urbanized area and is referred to as the Clean Water Partners. These groups follow regulatory guidelines to meet permit requirements including watershed based planning and education. Beyond just reducing the negative impacts of stormwater runoff, these groups are encouraged to prevent future stormwater problems by developing or adopting preventative measures. The permittees have additional responsibility to reduce stormwater problems on their property, eliminate illicit discharges to the storm sewer system, enact ordinances for water quality and channel protection, and encourage public participation and public education.

Total Maximum Daily Load (TMDL) Programs

Under section 303(d) of the Clean Water Act, states, territories, and authorized tribes are required to develop lists of impaired waters, defined as waters that are too polluted or otherwise degraded to meet all applicable water quality standards. The law requires that these jurisdictions establish priority rankings for waters on the lists and develop Total Maximum Daily Loads (TMDLs) for these waters. A TMDL is a calculation of the

maximum amount (loading rate) of a pollutant that a waterbody can receive and still safely meet water quality standards <u>http://www.epa.gov/owow/tmdl/</u>.

The only TMDL that has so far been established in the Kalamazoo River watershed is the Kalamazoo River/Lake Allegan TMDL for phosphorus (Heaton 2001; http://kalamazooriver.org/tmdl-phosphorus-reduction-efforts/documents-resources/). Lake Allegan, formed by an impoundment of the Kalamazoo River, is considered worthy of protection for its warmwater fishery, other indigenous aquatic life and wildlife, agriculture, navigation, industrial water supply, partial body contact recreation, and total body contact recreation. Prioritization of the Lake Allegan TMDL was driven by Michigan's five-year rotating watershed assessment approach. The United States Environmental Protection Agency (USEPA) conducted a National Eutrophication Survey of Lake Allegan in 1972, and at that time the lake was classified as hypereutrophic, with phosphorus implicated as the major pollutant contributing to the eutrophication. Additional monitoring data collected by the MDEQ in 1988, 1994, 1996, and 1997 and by Michigan State University (Reid and Hamilton 2007, Baas 2009) indicated that the lake had improved since the early 1970s but was still considered extremely nutrientenriched and eutrophic, with high nutrient and chlorophyll a levels, excessive turbidity, periodic nuisance algal blooms, low dissolved oxygen levels, and an unbalanced fish community dominated by carp and channel catfish. Total phosphorus concentrations measured by MDEQ in Lake Allegan between 1998-2000 averaged 96 ppb and ranged from 69 to 125 ppb.

The phosphorus TMDL for Lake Allegan was determined based on similarities between Lake Allegan and an upstream reservoir of similar characteristics (Morrow Lake), where the total phosphorus concentrations are lower (~60 ppb) and water quality is evidently better as a result. Using Morrow Lake as a model, the desired total phosphorus goal for Lake Allegan was set at 60 ppb. This is a lakewide average and the inflow total phosphorus concentrations tend to be about 20% higher than those of the outflow. The average total phosphorus concentrations in Lake Allegan in 1998 and 1999 were 95 and 96 ppb, respectively. Reid and Hamilton (2007) discuss this case in some detail and point out some of the scientific uncertainties in the concept that a proportionate decrease in phosphorus loading of this magnitude will make Lake Allegan's water quality as good as that in Morrow Lake. Nonetheless, reductions in loading of phosphorus can only help to improve water quality, not only in Lake Allegan but also in the river above and below the reservoir and in the waters of Lake Michigan to which the river drains.

Since 2001, people responsible for point sources and nonpoint sources have been working in collaboration to decrease phosphorus and sediment loading to the Kalamazoo River. The KRWC has participated in meetings of this group of stakeholders for the past several years, which has included the several cities and villages wastewater treatment plants, local industry and consultants, the Kalamazoo Environmental Council (KEC), Michigan Farm Bureau (MFB), Michigan Agricultural Stewardship Association (MASA), Michigan Department of Agriculture (MDA), Natural Resources Conservation Service, MDEQ, and numerous others. This unique effort has required point source permittees to assist in the implementation of projects that achieve nonpoint source phosphorus reduction including changes to rules and regulations (e.g., ordinances), public education, and monitoring. Since all citizens, governments, businesses, and NGOs have a role to play in nonpoint source loading reductions TMDL efforts are open to any individual or organization with something to contribute. A TMDL Implementation Committee was formed in order to guide efforts to meet the TMDL goals. A comprehensive implementation plan was developed by this committee to address all of the known or suspected sources of anthropogenic phosphorus loads in the Kalamazoo River portion of the Lake Allegan drainage (The TMDL Implementation Plan can be downloaded at http://kalamazooriver.net/tmdl/implementation-plan).

The committee has been engaged in many public education activities and non-point source phosphorus reduction efforts/projects as well as having provided in-kind services for this WMP project. Despite these active efforts, past phosphorus monitoring has indicated that the overall TMDL water quality goals for Lake Allegan have not been met. Though point sources have consistently met their waste load allocations with few exceptions, progress towards non-point source load allocations have not yet been identified in river monitoring. Past assessments of TMDL water quality monitoring data can be downloaded at http://kalamazooriver.net/tmdl/water-quality-data.

Besides tracking and addressing point-source inputs, participants have sought to address non-point source pollution as well. In addition, they have participated in the Kalamazoo River Water Quality Trading Demonstration Project, which has been conducted in the Kalamazoo River to improve water quality and provide information vital to the design of a statewide water quality trading program. The project, led by Kieser & Associates and the Forum for Kalamazoo County, demonstrated and evaluated the environmental and economic implications of watershed-based phosphorus trading between point- and nonpoint sources, with the goal of providing an incentive for implementing voluntary nonpoint source reductions and promoting collaborative, community-driven watershed management planning.

New TMDLs are targeted for development by specific future dates (see Table 14) and a several pollutants have been targeted as candidates for TMDLs. Most of these involve trace contaminants including PCBs, dioxins, and mercury, with concentrations in water and/or fish tissue proposed as the indicator. Davis Creek, a small tributary entering the river above the City of Kalamazoo, has known problems with fecal-associated bacteria (*E. coli*) of uncertain origin. Axtell and Arcadia Creek are also impaired by *E. coli* likely caused by domestic animals and nuisance wild animals, including geese. Excess sediment loading has been identified as a problem in a few sites; fortunately the coarse soils of much of the watershed are not as prone to soil erosion and transport as some other watersheds in Michigan and elsewhere where finer clays and silts are more predominant.

6.4. Roads and Water Quality

Roads can have substantial impacts on water quality. Controlling roadway-related pollution during project planning, construction and ongoing maintenance is important. For example, the salting and sanding of roads during the winter can be a significant pollution concern. The Michigan Department of Transportation and county Road Commissions are responsible for the construction and maintenance of most roads in the watershed. However, the management of local roads is often shared with townships, cities and villages. In addition, many cities and villages have their own road systems, which they maintain. The Southeast Michigan Council of Governments (SEMCOG) published a guidance document designed to promote good planning practices and endorse consideration and integration of environmental issues into transportation projects; for more information see http://www.semcog.org/Environmental_Sensitivity.aspx.

Increases in the area of impervious surfaces (roofs, parking lots, and roads) change stream hydrology by directing an increasing proportion of precipitation into storm drains instead of infiltrating into soils. Impervious surface area in the Kalamazoo River watershed has been mapped as part of this Plan (Figure 22).

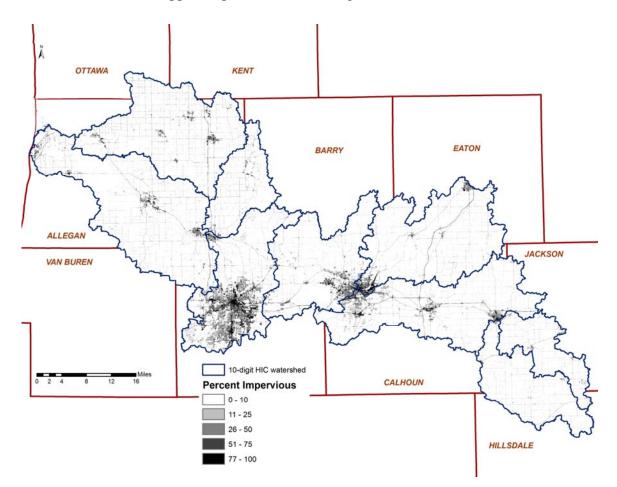


Figure 22. Impervious cover in the Kalamazoo River Watershed.

While the overall proportion of impervious surface area remains small, it is significant in the urbanized areas, which tend to lie along the rivers and historically have used streams as a means to quickly drain streets. Hence runoff from impervious surface areas can have a disproportionate impact of water quality in the Kalamazoo River and its tributaries, and undoubtedly contributes to pollutant loading including phosphorus (Baas 2009).

With increased development also comes more stream crossings. There are 2,755 road and utility stream crossings over the Kalamazoo River and tributaries. Improper crossing installations can lead to channel and fish habitat degradation, particularly because of sedimentation where large amounts of soil (and sand applied to roads in winter) wash into the stream (see tables in Wesley, 2005). Until recently MDEQ monitored road stream crossings periodically to identify problem areas in need of improvement. Approximately 500 road stream crossings were rated and mapped by MDEQ in 2000-2003 and Figure 23 displays available locations. About half of the crossings that were surveyed appeared to be in Good condition, but 44% were judged to be in Fair or Poor condition. More details are available in Attachment 4.

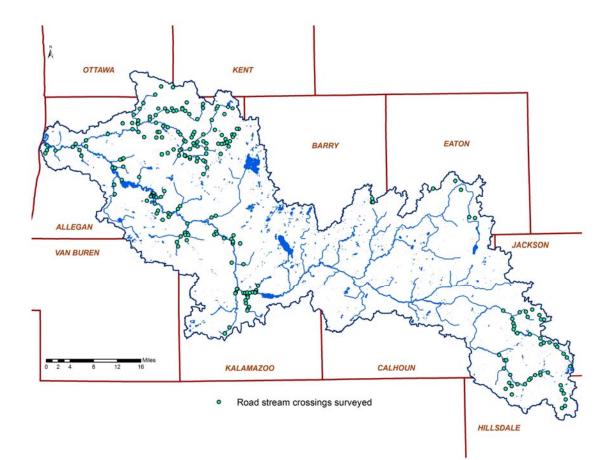


Figure 23. Road stream crossings surveyed by the MDEQ in 2000-2003.

6.5. Water Bodies (rivers, drains, streams, lakes)

Wetlands

Michigan is one of two states that have the authority to administer section 404 of the Clean Water Act dealing with wetland protection. Michigan regulates wetlands if they meet any of the following criteria:

- Connected to one of the Great Lakes.
- Located within 1,000 feet of one of the Great Lakes.
- Connected to an inland lake, pond, river, or stream.
- Located within 500 feet of an inland lake, pond, river or stream.
- Not connected to one of the Great Lakes or an inland lake, pond, stream, or river, but are more than 5 acres in size.
- Not connected to one of the Great Lakes, or an inland lake, pond, stream, or river, and less than 5 acres in size, but the DEQ has determined that these wetlands are essential to the preservation of the state's natural resources and has notified the property owner.

Since there are gaps in state protection of wetlands, a local unit of government (city, township, village, or county) has the authority to create wetland regulations. A local wetland ordinance must be at least as restrictive as state regulations and state officials must be notified if there is a local wetland ordinance in effect. Approximately 50 communities in Michigan have adopted local wetland ordinances. As of April 2008, within the Kalamazoo River watershed only Clyde Township, in Allegan County, is listed as having a local wetland ordinance; see http://www.michigan.gov/deqnps. Some jurisdictions within the watershed require building setbacks and a no-disturb zone around wetlands, which can be just as effective as a wetland ordinance.

Floodplains

The Michigan DEQ requires that a permit be obtained prior to any alteration or occupation of the 100-year floodplain of a river, stream or drain to ensure that development is reasonably safe from flooding and does not increase flood damage potential. Local ordinances restricting development in floodplains can be more restrictive than MDEQ regulations.

Several communities in the watershed participate in FEMA's National Flood Insurance Program (NFIP). The NFIP is a federal program enabling property owners in participating communities to purchase insurance protection against losses from flooding. The program is designed to provide an insurance alternative to disaster assistance to meet the escalating costs of repairing damage to buildings and their contents caused by floods. The overall intent of NFIP is to reduce future flood damage through community floodplain management ordinances, and provide protection for property owners against potential losses through an insurance mechanism that requires a premium to be paid for the protection.

Groundwater

Locally, county health departments play a role in groundwater protection with the regulation of the installation and design of septic systems. Local units of government have the authority to require the maintenance of septic systems through a septic system maintenance district ordinance. Another local groundwater protection option is a point of sale inspection ordinance for septic systems. With this ordinance, when property is sold there is a requirement to inspect the septic system. Barry County has a time-of-sale septic ordinance. In Van Buren County, Columbia Township also has adopted a time-of-sale septic inspection ordinance.

6.6. Local Water Quality Protection Policies

Local governments regulate land use mostly through master plans and zoning ordinances. Community participation in the NFIP is voluntary and based on an agreement between local governmental units and the Federal Government. The agreement states if a governmental unit will adopt and enforce a floodplain management ordinance to reduce future flood risks to new construction in Special Flood Hazard Areas, the Federal Government will make flood insurance available within the community as a financial protection against flood losses.

Local government master plans have the option to include a number of elements related to water quality and aquatic ecosystem protection. Master plans may relate water quality and natural resource protection to the safety and welfare of the residents and community. Plans may address the connection between land use and water quality. Further, the plans may discuss the negative impacts of increased impervious surfaces and the need for stormwater management and low impact development techniques to protect water quality. Lastly, plans may include language on natural resources (lakes, wetlands, streams, riparian buffers, woodlands, open space etc.) and their value to the community and their role in protecting water quality.

The following provisions in zoning ordinances are suggested for consideration by local governmental units interested in water quality and water resource protection:

- 1. Waterbody Protection
 - require adequate building setbacks along rivers/drains and wetlands
 - require naturally vegetated buffers along streams, rivers, lakes and wetlands
 - floodplain protection regulations

2. Site Plan Review Process

- show the location of natural features, such as lakes, ponds, streams, floodplains, floodways, wetlands, woodlands, steep slopes, and natural drainage patterns on site plans
- show and label all stormwater best management practices on the site plan (rain gardens, swales, etc)

- site plan review criteria require the preservation of natural features, such as lakes, ponds, streams, floodplains, floodways, wetlands, woodlands, steep slopes, and natural drainage patterns to the fullest extent possible and minimize site disturbance as much as possible
- require drain commissioner review of stormwater management during the site plan review process
- require the use of native plants in all landscaping plans and vegetative stormwater BMPs (to help reduce storm water velocities, filter runoff and provide additional opportunities for wildlife habitat)
- require the use of Low Impact Development techniques whenever feasible (see Low Impact Development Manual for Michigan: A Design Guide for Implementers and Reviewers available at

http://www.semcog.org/lowimpactdevelopmentreference.aspx.

- 3. Open Space and Agricultural Land Preservation
 - use bonus densities or other incentives to encourage open space developments
 - require all Planned Unit Developments to provide 25-50% open space
 - require open space areas to be contiguous and restrict uses of open space area to low impact uses
 - in agricultural zoning districts, utilize methods, such as sliding-scale, to limit fragmentation of farmland (e.g., number of times it can be split based on original lot size) and to lessen conflicts between farming and residential uses
 - require buffers between agricultural operations and residential uses
 - allow for clustering/open space developments in agricultural districts to protect natural features

4. Parking Lots and Roads - Reducing Impervious Surfaces

- allow for more flexibility in parking standards and encourage shared parking
- require a portion of large paved parking lots to be planted with trees/vegetation
- require treatment of stormwater parking lot runoff in landscaped areas
- require 30% of the parking area to have compact car spaces (9 x18 ft or less)
- allow driveways and overflow parking to be pervious or porous pavement
- use maximum spaces instead of minimums for parking space numbers
- require landscaped areas in cul-de-sacs and allow hammerhead shaped cul-de-sacs to reduce paved surface area
- allow swales instead of curb and gutter (if curbs are used require perforated or invisible curbs, which allow for water to flow into swales

5. Stormwater BMPs (refer to *Low Impact Development Manual for Michigan: A Design Guide for Implementers and Reviewers* see model stormwater ordinance at www.swmpc.org/ordinances.asp

- allow the location of bioretention areas (rain gardens, filter strips, swales) in required setback areas and common areas
- encourage the use of best management practices (BMPs) that improve a site's infiltration and have BMPs labeled and shown on site plans
- require use of native plants for landscaping plans and for runoff/stormwater controls (prohibit invasive and exotics species)
- encourage use of above ground BMPs instead of below ground stormwater conveyance systems
- prohibit direct discharge of stormwater into wetlands, streams, or other surface waters without pre-treatment
- require periodic monitoring of BMPs to ensure they are working properly and require that all stormwater BMPs be maintained
- channel protection criteria require proper release rate to insure no increase in stormwater discharge rate or volume for the 2 year/24-hour storm post construction (see page 62 for more information)

6.7. Private Land Management

Beyond, federal, state and local laws protecting water quality, the greatest opportunity to protect and preserve water quality and natural resources rests with private landowners in how they manage their lands. Most of the land in the watershed is in private ownership. Many organizations are willing to provide technical assistance to landowners on how to better manage their lands to protect natural resources and water quality. These organizations include MSU Extension staff, Conservation Districts, Natural Resources Conservation Service, Southwest Michigan Land Conservancy, The Nature Conservancy, Kalamazoo Nature Center, Department of Environmental Quality, and United States Fish and Wildlife Service (Partners for Wildlife Program). Land trusts such as the Southwest Michigan Land Conservancy and The Nature Conservancy assist private landowners with permanent conservation options such as Conservation Easements, which leave the land in private ownership and preserve many practical land use rights. See Table 11 and 12 for more detailed information on protection and management options available for private lands.

Land Protection Option	Description	Results	Income Tax Deduction ?*	Estate Tax Reduction ?*
Conservation easement	Legal agreement between a landowner and a land conservancy or government agency permanently limiting a property's uses.	Important features of the property protected by organization. Owner continues to own, use, live on land.	Yes	Yes
Outright land donation	Land is donated to the land conservancy.	Organization owns, manages, and protects land.	Yes	Yes
Donation of land by will	Land is specifically designated for donation to the land conservancy.	Organization owns, manages, and protects land.	No	Yes
Donation of remainder interest in land with reserved life estate	Personal residence or farm is donated to the land conservancy, but owner (or others designated) continue to live there, usually until death.	Organization owns remainder interest in the land, but owners (others) continue to live on and manage land during their lifetime subject to a conservation restriction.	Yes	Yes
Bargain sale of land	Land is sold to the land conservancy below fair market value. It provides cash, but may also reduce capital gains tax, and entitle you to an income tax deduction.	Organization owns, manages, and protects land.	Yes	Yes

 Table 11. Private land protection options.

*The amount of income/estate tax reduction depends on a number of factors. Please consult a professional tax and/or legal advisor. (Adapted from Conservation Options: A Landowner's Guide, Land Trust Alliance.)

Table 12.	Private l	land n	nanagement	programs.**
-----------	-----------	--------	------------	-------------

Land Management Option	Description	Agreement	Landowner reimbursement
Wildlife Habitat Incentive Program (WHIP)	Provides technical and financial assistance to promote wildlife habitat including corridor, riparian buffer and rare species habitat development	Contracts run for a minimum of 5 years and a maximum of 10 years.	Up to 75% of cost of improvements.
Wetland Reserve Program (WRP)	Assists in restoring active agricultural land to natural wetland condition.	Agreements can be 10-year, 30-year or perpetual.	Up to 75% of cost of improvements or 100% for permanent agreements.
Environmental Quality Incentives Program (EQIP)	Assists in restoring agricultural land to wildlife habitat.	Agreements can last 2-10 years.	Up to 75% of cost of improvements.

**These are just a few of many examples. For more information contact county Conservation District offices.

Special Limited Time Opportunities

Numerous state and federal programs and particularly Farm Bill programs annually support private lands management. Two unique opportunities expected to be available in the Kalamazoo River Watershed for several years beyond 2010 are the Great Lakes Restoration Initiative (GLRI, see <u>www.epa.gov/glnpo/glri</u>) and the Agricultural Watershed Enhancement (AWEP, see <u>www.nrcs.usda.gov/programs/awep/</u>) programs. The GLRI has the following focus areas: 1) Cleaning up toxics and areas of concern; 2) Combating invasive species; 3) Promoting nearshore health by protecting watersheds from polluted run-off; 4) Restoring wetlands and other habitats; and, 5) Working with partners on outreach. AWEP is a voluntary conservation initiative that provides financial and technical assistance to agricultural producers to implement agricultural water enhancement activities on agricultural land for the purposes of conserving surface and ground water and improving water quality.

Healthy Waters Working Farms Initiative

Formerly called the Healthy Waters Rural Pride Initiative, the newly named Healthy Waters Working Farms Initiative is working in west and southwest Michigan to create a formula for ensuring a sustainable rural future by partnering local working farms preservation programs and water quality protection practices to permanently improve the riparian ecosystems and associated habitats. The Initiative has been developed to address the following issues:

Limitations of current working farm protection options and financial incentives.

- The working farm protection options provided by Public Act 116 are not permanent and the financial penalties for removing land are not enough of a deterrent and are frequently unpaid by the farmer.
- Buffer practices implemented through Farm Bill and Conservation Reserve Program cost share contracts are limited to 10-15 years and then can be removed. These buffers practices can also be removed prior to end of the contract with a penalty.

Current Farmland Preservation Models do not address natural resource protection.

- The standards of requiring a Conservation Plan to enroll in Farmland Preservation vary among counties throughout the State of Michigan.
- There are no requirements for implementing best management practices to keep sediment and nutrients on the land.
- Placing an easement on just the buffer area, as done in other conservation practice models, does not address the needs of the farmer, the whole farm or the community.

Shortcomings of local Agricultural Technical Assistance and Preservation Delivery Systems:

- Technical Staff are either non-existent or frequently change due to short term funding through grant programs.
- Knowledge, expertise and relationships are lost with staff turnover.
- Landowner commitment and interest are jeopardized when technical assistance is inconsistent.

HWWF is an innovative approach to locally manage natural and agricultural resources for economic, environmental and social sustainability. It acknowledges that agriculture maintains open space and has an intrinsic contribution to a county's economy, environment, character, history, recreational opportunities, and quality of life.

7. Water Quality Summary

Within a watershed, water quality can vary greatly from one water body to the next. The federal Clean Water Act (CWA) requires Michigan to prepare a biennial Integrated Report on the quality of its water resources as the principal means of conveying water quality protection/monitoring information to the United States Environmental Protection Agency (US EPA) and the United States Congress. For each water body, the report classifies each designated use as: 1) fully supported, 2) not supported or 3) not assessed. Designated uses not supported because of a specific pollutant may require the development of a Total Maximum Daily Load (TMDL; see discussion in Section 6.3 above).

7.1. Designated and Desired Uses

According to the Michigan DEQ, the primary criterion for attainment of water quality standards (see Attachment 4.5) is whether the water body meets designated uses. Designated uses are recognized uses of water established by state and federal water quality programs. All surface waters of the state of Michigan are designated for and shall be protected for the uses listed in Table 13 (Citation: R323.1100 of Part 4, Part 31 of PA 451, 1994, revised 4/2/99). This watershed management plan provides guidance for protecting and restoring designated uses.

Designated Use	General Definition
Agriculture	Water supply for cropland irrigation and
	livestock watering
Industrial Water Supply at point of intake	Water utilized in industrial processes
Public Water Supply	Public drinking water source
Navigation	Waters capable of being used for shipping,
	travel, or other transport by private,
	military, or commercial vessels
Warmwater Fishery	Supports reproduction of warmwater fish
Coldwater Fishery (as applicable)	Supports reproduction of coldwater fish
Other Indigenous Aquatic Life and	Supports reproduction of indigenous
Wildlife	animals, plants, and insects
Partial Body Contact	Water quality standards are maintained for
	water skiing, canoeing, and wading
Total Body Contact	Water quality standards are maintained for
	swimming

Table 13. Designated use definitions (see Attachment 5 for numerical standards and further detail).

For this Plan, a current list of impaired waters under section 303(d) was synthesized and is presented in Table 14.

Watan Badu	AUID	Impoined Lise	Cause	TMDL Status
Water Body	AUID	Impaired Use		Status
	except			
	0103-01,			
	0104-01,			
	0201-01,			
	0202-01,			
	0202-02,			
	0203-02,			
	0204-04,			
	0205-01,			
	0206-01,			
	0206-02,			
	0406-01,			
Kalamazoo River	0406-02,			
Watershed	0407-01,			
Rivers/Streams	0407-02	Fish Consumption	PCB in Fish Tissue	2013
Kalamazoo River	0407-02	Tish Consumption		2013
Watershed	A 11	Eich Communitien	DCD in Water Calumn	2012
Rivers/Streams	All	Fish Consumption	PCB in Water Column	2013
			Other Anthropogenic	
		Other Indigenous	Substrate Alterations,	
Misc. Waters-		Aquatic Life and	Other Flow Regime	
Swains Lake Drain	0204-03	Wildlife	Alterations	
Ceresco				
Impoundment	0408-02	Fish Consumption	PCB in Fish Tissue	2013
Gull Lake	0507-04	Fish Consumption	Mercury in Fish Tissue	2011
	0507-04	Fish Consumption	PCB in Fish Tissue	2013
		Other Indigenous		
		Aquatic Life and	Mercury in Water	
Kalamazoo River	0508-01	Wildlife	Column	2011
Ratamazoo River	0500-01	Other Indigenous	Column	2011
		Aquatic Life and		
	0508-01	Wildlife	DCD in Water Column	2012
	0308-01	whame	PCB in Water Column	2013
	0.500.01	F'L G	Mercury in Water	2011
	0508-01	Fish Consumption	Column	2011
		Other Indigenous		
Whiteford Lake		Aquatic Life and	Mercury in Water	
Outlet	0508-04	Wildlife	Column	2011
	1		Mercury in Water	
	0508-04	Fish Consumption	Column	2011
		Other Indigenous		
Unamed Tributary	1	Aquatic Life and	Mercury in Water	
to Kalamazoo River	0508-05	Wildlife	Column	2011
	1		Mercury in Water	
	0508-05	Fish Consumption	Column	2011
		Other Indigenous		
		Aquatic Life and	Mercury in Water	
Kalamazoo River	0509-01	Wildlife	Column	2011
Isalama200 INIVO	0507-01	Other Indigenous		2011
	0500.01	Aquatic Life and	DCD in Water Column	2012
N/ T 1	0509-01	Wildlife	PCB in Water Column	2013
Morrow Lake	0500.00	FI G		2012
(Pond) Reservoir	0509-02	Fish Consumption	PCB in Fish Tissue	2013
			PCB in Fish Tissue, PCB	
			in Water Column	
			(attainment expected	
Portage Creek	0603-02	Fish Consumption	2022 and 2026)	2013

Table 14. Impaired designated uses in the Kalamazoo River Watershed.

Water Body	AUID	Impaired Use	Cause	TMDL Status
	0.002.05	Total Body Contact		2022
Axtell Creek	0603-05	Recreation Partial Body Contact	E.Coli	2022
Axtell Creek	0603-05	Recreation	E.Coli	2022
		Other Indigenous		
Kalamana Dima	0004 01	Aquatic Life and Wildlife	Mercury in Water	2011
Kalamazoo River	0604-01	Other Indigenous	Column	2011
Kalamazoo River	0604-01	Aquatic Life and Wildlife	PCB in Water Column	2013
Kalamazoo River	0604-01	Fish Consumption	Dioxin	2021
	0.004.00	Total Body Contact		2016
Davis Creek	0604-02	Recreation Partial Body Contact	E.Coli	2016
Davis Creek	0604-02	Recreation	E.Coli	2016
Davis Creek	0604-02	Fish Consumption	Dioxin	2021
		Total Body Contact		
Davis Creek	0604-03	Recreation	E.Coli	2016
Davis Creek	0604-03	Partial Body Contact Recreation	E.Coli	2016
Davis Creek	0604-03	Fish Consumption	Dioxin	2010
Spring Brook	0605-01	Fish Consumption	Dioxin	2021
Spring Brook	0005 01	Other Indigenous	DIOXIII	2021
		Aquatic Life and	Mercury in Water	
Kalamazoo River	0606-01	Wildlife	Column	2011
		Other Indigenous Aquatic Life and		
Kalamazoo River	0606-01	Wildlife	PCB in Water Column	2013
Kalamazoo River	0606-01	Fish Consumption	Dioxin	2021
			Mercury in Water	
Kalamazoo River	0606-01	Fish Consumption	Column	2011
		Other Indigenous Aquatic Life and	Mercury in Water	
Kalamazoo River	0606-03	Wildlife	Column	2011
		Other Indigenous		
	0.000.02	Aquatic Life and		2012
Kalamazoo River	0606-03	Wildlife	PCB in Water Column	2013
Kalamazoo River	0606-03	Fish Consumption Total Body Contact	Dioxin	2021
Arcadia Creek	0606-04	Recreation	E.Coli	2022
		Partial Body Contact		
Arcadia Creek	0606-04	Recreation	E.Coli	2022
		Other Indigenous Aquatic Life and	Mercury in Water	
Arcadia Creek	0606-04	Wildlife	Column	2011
		Other Indigenous		
	0.000.04	Aquatic Life and		2012
Arcadia Creek	0606-04	Wildlife	PCB in Water Column	2013
Arcadia Creek	0606-04	Fish Consumption Other Indigenous	Dioxin	2021
		Aquatic Life and	Mercury in Water	
Kalamazoo River	0607-01	Wildlife	Column	2011
		Other Indigenous		
Kalamazoo Diver	0607-01	Aquatic Life and Wildlife	PCB in Water Column	2012
Kalamazoo River Kalamazoo River	0607-01 0607-01	Wildlife Fish Consumption	PCB in Water Column Dioxin	2013 2021

Water Body	AUID	Impaired Use	Cause	TMDL Status	
			Mercury in Water		
Kalamazoo River	0607-01	Fish Consumption	Column	2011	
Unamed Tributary					
to Kalamazoo River	0607-02	Fish Consumption	Dioxin	2021	
Unamed Tributary					
to Kalamazoo River	0607-03	Fish Consumption	Dioxin	2021	
Silver Creek	0607-04	Fish Consumption	Dioxin	2021	
	0007 01	Tish Consumption		2021	
Unamed Tributary to Kalamazoo River	0607-05	Fish Consumption	Fish Consumption Dioxin		
to Kalallazoo Kivel	0007-05	Other Indigenous	Dioxin	2021	
Unamed Tributary		Aquatic Life and	Other Anthropogenic		
to Kalamazoo River	0607-05	Wildlife	Substrate Alterations		
		Other Indigenous			
Unamed Tributary		Aquatic Life and	Other Flow Regime		
to Kalamazoo River	0607-05	Wildlife	Alterations		
Pine Lake W. of	0.407.04			2011	
Prairieville	0607-06	Fish Consumption	Mercury in Fish Tissue	2011	
Gun Lake	0701-08	Fish Consumption	Mercury in Fish Tissue	2011	
Fenner Lake	0702-01	Fish Consumption	Mercury in Fish Tissue	2011	
Fenner Lake	0702-01	Fish Consumption	PCB in Fish Tissue	2013	
			Other Anthropogenic		
		Other Indigenous	Substrate Alteration,		
C D'	0702.05	Aquatic Life and	Other Flow Regime		
Gun River	0702-05	Wildlife	Alterations		
Fish Lake	0702-08	Fish Consumption	Mercury in Fish Tissue	2011	
Selkirk Lake	0803-01	Fish Consumption	Mercury in Fish Tissue	2011	
		Other Indigenous			
Red Run	0006 02	Aquatic Life and Wildlife	Cause Unknown, Sedimentation/Siltation	2017	
Ked Kull	0806-02	Other Indigenous	Direct Habitat	2017	
		Aquatic Life and	Alterations, Other Flow		
Red Run	0806-02	Wildlife	Regime Alterations		
Hamilton					
Impoundment,					
Rabbit River	0811-03	Fish Consumption	PCB in Fish Tissue	2011	
		Other Indigenous	M		
Osgood Drain	0905-01	Aquatic Life and Wildlife	Mercury in Water Column	2011	
	0905-01	Other Indigenous	Column	2011	
		Aquatic Life and			
Osgood Drain	0905-01	Wildlife	PCB in Water Column	2013	
Osgood Drain	0905-01	Fish Consumption	Dioxin	2021	
6			Mercury in Water		
Osgood Drain	0905-01	Fish Consumption	Column	2011	
		Other Indigenous			
Kalamazoo River		Aquatic Life and	Mercury in Water		
and Pine Creek	0905-02			2011	
Kalamazoo River		Other Indigenous Aquatic Life and			
and Pine Creek	0905-02	-		2013	
	0705-02	** indifie		2013	
Kalamazoo River	0005.00	FILO	D	0001	
and Pine Creek	0905-02	Fish Consumption	Dioxin	2021	
		Other Indigenous			
		Aquatic Life and	Mercury in Water		

Water Body	AUID	Impaired Use	Cause	TMDL Status
		Other Indigenous		
1 1	0006.01	Aquatic Life and		2012
Kalamazoo River	0906-01	Wildlife	PCB in Water Column	2013
Kalamazoo River	0906-01	Fish Consumption	Dioxin	2021
			Mercury in Water	
Kalamazoo River	0906-01	Fish Consumption Other Indigenous	Column	2011
		Aquatic Life and	Mercury in Water	
Kalamazoo River	0907-01	Wildlife	Column	2011
Kulullu200 Kivel	0,01,01	Other Indigenous		2011
		Aquatic Life and		
Kalamazoo River	0907-01	Wildlife	PCB in Water Column	2013
Kalamazoo River	0907-01	Fish Consumption	Dioxin	2021
			Mercury in Water	
Kalamazoo River	0907-01	Fish Consumption	Column	2011
Dumont Creek and		•		
Kalamazoo River	0907-02	Fish Consumption	Dioxin	2021
Kulullu200 Kivel	0707 02	Other Indigenous		2021
Rossman Creek and		Aquatic Life and	Mercury in Water	
unamed tribs	0907-03	Wildlife	Column	2011
		Other Indigenous		
Rossman Creek and		Aquatic Life and		
unamed tribs	0907-03	Wildlife	PCB in Water Column	2013
Rossman Creek and				
unamed tribs	0907-03	Fish Consumption	Dioxin	2021
Rossman Creek and			Manaum in Watan	
unamed tribs	0907-03	Fish Consumption	Mercury in Water Column	2011
Dumont Creek	0907-05	Fish Consumption	Dioxin	2021
		Other Indigenous Aquatic Life and		
		Wildlife; Fish	Excess Algal Growth,	
Lake Allegan	0907-06	Consumption	Phosphorus (Total)	2001*
Lake Allegan	0907-06	Fish Consumption	Dioxin	2021
		-	-	
Lake Allegan	0907-06	Fish Consumption Other Indigenous	PCB in Fish Tissue	2013
		Aquatic Life and	Mercury in Water	
Kalamazoo River	0909-01	Wildlife	Column	2011
Kulullu200 Kivel	0,0,0,01	Other Indigenous		2011
		Aquatic Life and		
Kalamazoo River	0909-01	Wildlife	PCB in Water Column	2013
			Mercury in Water	
Kalamazoo River	0909-01	Fish Consumption	Column	2011
		Other Indigenous		
		Aquatic Life and	Mercury in Water	
Kalamazoo River	0911-01	Wildlife	Column	2011
		Other Indigenous		
Kalamazoo Diver	0011-01	Aquatic Life and Wildlife	DCB in Water Column	2012
Kalamazoo River	0911-01	whunte	PCB in Water Column Mercury in Water	2013
Kalamazoo River	0911-01	Fish Consumption	Column	2011
Isulalita200 KIVCI	0711-01	Other Indigenous		2011
Peach Orchard		Aquatic Life and	Mercury in Water	
Creek	0911-02	Wildlife	Column	2011
Peach Orchard			Mercury in Water	
Creek	0911-02	Fish Consumption	Column	2011

Water Body	AUID	Impaired Use	Cause	TMDL Status
		Other Indigenous		
		Aquatic Life and	Mercury in Water	
Kalamazoo River	0911-03	Wildlife	Column	2011
			Mercury in Water	
Kalamazoo River	0911-03	Fish Consumption	Column	2011
Kalamazoo Lake	0912-01	Fish Consumption	PCB in Fish Tissue	2013

Attachment 11 includes a map displaying nonpoint source related impaired waterbodies.

The designated uses of Agriculture, Industrial Water Supply and Navigation are being met throughout the watershed. The Public Water Supply use is not applicable in the watershed because no communities withdraw water directly from surface waters.

The State of Michigan also considers Fish Consumption a designated use for all water bodies. There is a generic, statewide, mercury-based fish consumption advisory that applies to all of Michigan's inland lakes.

Industrial. There are several industrial water intake sites along the Kalamazoo River. Industries and commercial businesses also use the river for surface water discharge either directly or via municipal sewage treatment facilities. Figure 24 shows current NPDES permits for discharging treated waste water, cooling water and other effluents.

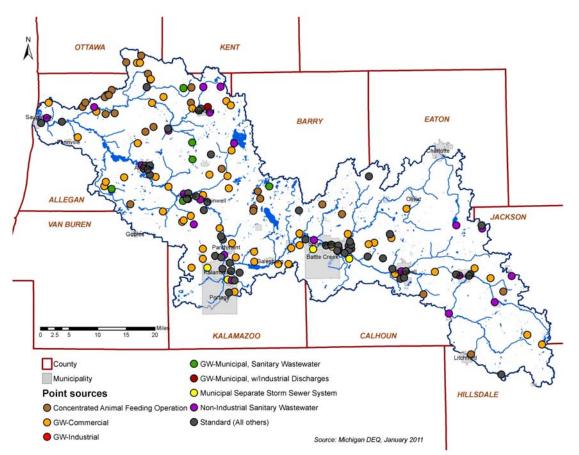


Figure 24. NPDES pollutant discharge permits in the Kalamazoo River Watershed.

Municipal. There are no municipal drinking water intakes on the river. The main source of drinking water is from groundwater wells, private and municipal. Residential wastes are discharged to groundwater via septic systems, or to the river via municipal sewage treatment facilities.

Agricultural. There is some intake of river water for irrigation of crops. The Kalamazoo River and its tributaries are also used extensively for watering livestock.

Navigational. About a one mile stretch of the Kalamazoo River mouth downstream of Kalamazoo Lake (Harbor Area) is designated as an Army Corps of Engineers recreational waterway and maintained through dredging. Sand periodically removed from the channel is clean enough that it does not trigger the need for special handling and is disposed of locally.

A 2007 review of existing subwatershed plans at that time revealed the following breakdowns for subwatershed impaired and threatened uses and prioritization of pollutants (Table 15) [These listings are not 303(d) listings but are impairments and threatened uses perceived by watershed stakeholders].

Table 15. Summary of subwatershed impaired and threatened use review and prioritization o	f
pollutants in plans published before as 2007 perceived by stakeholders (not 303(d) listings).	

Watershed Management Unit	Agriculture	Industrial Use	Navigation	Warmwater Fisheries	Coldwater Fisheries	Aquatic Life and Wildlife	Partial Body Contact	Full Body Contact
Rice Creek				k	k	k	k	k
Battle Creek River	t			k	k	k		t
Mainstem 3 Corridor				k	k			
Davis Creek				k	k	k		
Portage/Arcadia Creeks			t	k	k	k		t
Gun River	t		t	k	k	k		t
Upper Rabbit River				k	k	k		t

t = threatened

k = known

Table 15. continued

Watershed Management Unit	Sediments	Nutrients	Hydrological Flow	Pathogens	Oil, Grease, Heavy Metals, Hydrocarbons	Pesticides	Salts	Temperature	Solid Waste
Rice Creek	h	h	h	m	l-m	l-m	l-m	h	
Battle Creek River	h	h	h	m	m	m	1	Ι	
Mainstem 3 Corridor	h	h		h	h				
Four Townships	h	m		1		Ι			
Davis Creek	h	h	h	Ι	h	1			
Portage/Arcadia Creeks	h	h	h	h	h		h		
Gun River	h	h	h	h	l-m			h	
Upper Rabbit River	h	h	h	l-m		l-m			

h = high

m = medium

I = Iow

This Plan relies on current, known impairments to designated uses that have specific pollutants, sources, and causes (Table 16). Threats are also discussed in general in the narrative. An assessment of individual water bodies was completed for the watershed and can be found in Attachment 6. Detailed information is available in numerous subwatershed plans referenced in Table 1.

Table 16. Impaired and threatened designated uses, known and suspected pollutants and sources, and causes in the Kalamazoo River Watershed.

Designated Use	Prioritized Pollutants and Impairments to Designated Uses	Source of Pollution	Causes for Release of Pollutants	Documented Presence in Watershed
Agriculture: Met				
Other Indigenous Aquatic Life and Wildlife: Impaired - Lake Allegan watershed under 2001 TMDL for excess algal growth, phosphorus (total); Threatened – All	1. Nutrients (K)	Cropland erosion (K) Stormwater runoff (K)	Conventional tillage practices. Plowing adjacent to water bodies. Loss of nutrient and sediment retention capacity of floodplains and wetlands. Discharge from impervious surfaces and developed areas. Ineffective stormwater management.	Agriculture makes up over half of land use Urban/residential growth. Wetland drainage
		Land application of manure (S)	Lack of adherence to manure management plans. Manure management plans may not be enforced for small and medium sized animal feeding operations. Improper manure handling and spreading.	Land used for manure spreading
		Livestock facility runoff (S)	Improper manure storage and feedlot runoff.	Facility status to be determined
		Septic system failures and illicit connections (S)	Improperly designed, installed, and maintained septic systems. Unknown illicit connections.	Septic systems are widespread
		Streambank or shoreline modification (S)	Lack of riparian vegetation. Inadequate soil erosion and sedimentation control. Flashy flows from changes in land use and lack of stormwater controls.	Extensive low density shoreline development along many waterbodies

Designated Use	Prioritized Pollutants and Impairments to Designated Uses	Source of Pollution	Causes for Release of Pollutants	Documented Presence in Watershed
Impaired –Red Run Drain; Un- named Tributary to Kalamazoo River south of the City of Plainwell; Threatened – All	2. Sediment (K)	Stormwater runoff (K)	Loss of floodplains and wetlands as retention. Discharge from impervious surfaces and developed areas. Ineffective stormwater management.	Urban/residential growth. Wetland drainage
		Cropland erosion (K) Road and bridge crossings (S)	Conventional tillage practices. Plowing adjacent to water bodies. Undersized culverts, poorly designed and maintained crossings.	Agriculture makes up over half of land use Subwatershed plans document site specific concerns
		Streambank or shoreline modification (S)	Lack of riparian vegetation. Inadequate soil erosion and sedimentation control. Flashy flows from changes in land use and lack of stormwater controls.	Extensive low density shoreline development along many waterbodies
Impaired – Red Run Drain; Threatened – All	6. Habitat degradation or fragmentation (K)	Loss of habitat (K)	Agricultural land drainage (e.g., tiles). Development of open space for agriculture and urban development. Drain management.	Agriculture makes up over half of land use, and urban areas are developing
Impaired - Rabbit River Swains Lake Drain and Misc. Waters; Gun River; Red Run Drain; Threatened – All	3. Unstable flow (K)	Stormwater runoff (P)	Loss of floodplains and wetlands as retention. Discharge from impervious surfaces and developed areas. Ineffective stormwater management. Drain management.	Urban/residential growth; hydrologic study indicated increasing flashiness in some tributaries.
Public Water Supply : Not applicable – no intakes				

Table 16. Impaired and threatened designated uses, known and suspected pollutants and sources, and causes in the Kalamazoo River Watershed.

Table 16. Impaired and threatened designated uses, known and suspected pollutants and sources, and causes in the Kalamazoo River Watershed.

Designated Use	Prioritized Pollutants and Impairments to Designated Uses	Source of Pollution	Causes for Release of Pollutants	Documented Presence in Watershed
Coldwater Fishery : Threatened – All applicable coldwater systems including particularly Portage	4. Temperature (S)	Lack of riparian habitat or habitat modification	Due to agriculture and urban land use and development; extensive impervious surfaces.	Extensive low density shoreline development and agriculture along many waterbodies
Creek;		Stormwater runoff (P)	Loss of floodplains and wetlands as retention. Discharge from impervious surfaces and developed areas. Ineffective stormwater management.	Urban/residential growth
Total and Partial Body Contact Recreation : Impaired – Axtell Creek, Davis Creek, Arcadia Creek; Threatened – urbanized watersheds	5. Pathogens- Bacteria (K)	Stormwater runoff (K)	Pets and urban nuisance wildlife (esp. Canada Geese)	Urbanized stormwater drainage systems
Navigation: Met Industrial: Met				

K = known, S = suspected

7.2. Water Quality: General Considerations

As noted in the Introduction, the Kalamazoo River watershed possesses a rich diversity of surface waters, most of which are in good ecological condition. These surface waters - lakes, streams, and wetlands - are highly valued by local residents for recreational and aesthetic reasons. The watershed is underlain by extensive groundwater aquifers, and groundwater and surface-water bodies are intimately connected where permeable glacial soils of the area promote exchanges of water between the land surface, groundwater, streams, lakes, and wetlands. Thus the entire hydrologic system is vulnerable to the degradation of water quality in the case of contaminants that are mobile in groundwater systems, as for example agrochemicals from row-crop production (e.g., nitrate, atrazine). Wetlands are abundant in the watershed and they serve to improve water quality because they are often situated at the interface between groundwater, surface runoff, and lakes and streams, where they remove excess nutrients, sediments, and contaminants, and hence their protection is a priority wherever they occur.

The Kalamazoo River watershed is predominantly rural but also includes urban and suburban landscapes, and although urban land use is a small fraction of the watershed, the larger cities formerly supported a plethora of industrial activities. The legacy of industrial pollution, most notably PCBs, is a continuing problem that has already been discussed in Section 5. Another major legacy of earlier industrial activity persists in the form of aging dams, which in the case of the lower Kalamazoo River hold large quantities of contaminated sediments behind them. Other contaminants of industrial origin occur in specific sites, notably old landfills and other hot spots where groundwater has been contaminated by poor practices on the land surface.

Besides the legacy contaminants from industrial activity, phosphorus, sediments, and microbial pathogens are the pollutants of greatest concern in lakes and streams of the Watershed, while nitrate and potentially other agrochemicals are a concern in groundwater given the predominance of groundwater wells to supply local drinking water for individual homes as well as municipalities. Here we focus on the non-point source pollutants of greatest concern for surface waters.

Surface waters including lakes as well as streams and rivers in the watershed are particularly sensitive to increased loading of phosphorus (P). Phosphorus is the most common limiting nutrient to biological productivity in freshwater systems. Most water reaches lakes and streams via groundwater flow. Nitrogen as nitrate is highly mobile in groundwater whereas P tends to stick to soils and sediments. Most P loading to surface waters occurs via overland flow (including storm drains) as well as from fertilizer use and septic/sewer leakage at sites that are close to the water's edge. In rivers including the Kalamazoo River main stem that receive municipal and industrial discharges of waste water, a substantial fraction of the P loading can come from point sources. Nonpoint sources of P include sediments carried by overland flow or storm drains. These sediments pose two issues: 1) sediments typically carry P in a form that is available to algae and plants; and, 2) excessive loading of sediments to shallow waters can degrade

habitat for aquatic plants and animals. Concentrations of available P in most surface waters are very low and seemingly slight increases can stimulate undesirable blooms of algae and aquatic plants. Streams are somewhat less sensitive to P loading but they deliver water to sensitive downstream waters including the reservoirs along the Kalamazoo River. Lake Allegan, located on the Kalamazoo River downstream of much of the watershed, has a phosphorus TMDL as discussed in Section 6.3.

Like P and sediments, microbial pathogens originating on land are likely to reach water bodies primarily via overland flow and septic/sewer leakage. Agricultural tile drains can also carry pathogens where livestock or manure applications exist. In addition, wildlife, livestock or pets that deposit excrement in close proximity to the water's edge or within the water can be important sources.

Recent local expansion of Confined Animal Feeding Operations (CAFOs) in southwest Michigan has led to increasing citizen concerns about the application of manure on farm fields. The implications of intensified animal operations for ground- and surface-water quality remain uncertain; even if manure is only applied at considerable distances from water bodies, the potential for nitrate leaching to groundwater may be enhanced. Nitrate in drinking water has already emerged as a problem for residents on wells in the agricultural portions of the watershed, although high levels are found in a minority of the total wells that are tested. Nitrate consumed in drinking water can block the ability of human blood to transport oxygen and has been associated with other health problems. High nitrate in drinking water is believed to be especially dangerous for pregnant mothers and the very young.

Thermal changes are a concern primarily in the streams that currently support trout. Augusta Creek, Spring Brook, Portage Creek, Dickinson Creek, Rice Creek, and the South Branch of the upper Kalamazoo River are examples of streams in the watershed that are popular for fly fishing, and their trout fisheries are managed by MDNR. Increased area of impervious surfaces that conduct storm runoff directly into the streams could pose a threat to the trout by increasing summer temperatures, which already can approach stressful levels. Similarly, impoundments or artificial ponds as well as riparian deforestation can increase stream temperatures. Several studies have pointed out how this problem is expected to become increasingly challenging as the climate warms.

In a watershed that contains certain waters that have been markedly degraded by pollution, it is tempting to focus all of our resources and attention on remediation of the worst sites. Yet mitigation of the more widespread yet insidious non-point sources of water pollution is just as important, and a broad-scale, comprehensive approach to water quality protection and improvement would yield the greatest benefits to residents across the entire watershed. Also, the protection of our highest-quality water bodies should be a priority, and sometimes their ecological integrity can be inadvertently endangered by the residents who appreciate them and live along them. In this Plan we strive to balance the competing needs to remediation, restoration, mitigation, and pro-active protection of our diverse and abundant water resources.

7.3. Groundwater quantity and quality

A properly functioning hydrologic cycle is greatly dependent upon the land cover and natural features in the watershed. Natural vegetation, such as forested land cover, usually has high infiltration capacity and low runoff rates. In contrast, urbanized land cover has impervious areas (buildings, parking lots and roads) and networks of ditches, pipes and storm sewers, which bypass soil infiltration and rapidly direct runoff into streams and lakes. This hard conveyance system, sometimes called grey infrastructure, rapidly and efficiently delivers nutrients, sediments, and pathogens to receiving water bodies. Impervious surfaces in urban areas also alter the natural hydrology, reducing infiltration and the recharge of groundwater while increasing the amount of runoff.

Agricultural lands, including row crops, orchards, vineyards, rangelands and animal farms, can also have a significant impact on runoff and groundwater resources. Agricultural lands are often heavily compacted by farm equipment, which lessens their ability to infiltrate water and thereby enhances surface runoff. In addition, many agricultural lands are extensively tiled and/or ditched to move water off of the land as quickly as possible. Furthermore, irrigation can be a consumptive use of local groundwater resources. These activities disrupt the natural hydrologic cycle and negatively impact the functioning of the remaining natural features in the watershed.

Extensive and high-quality groundwater reservoirs (or aquifers) underlie much of the watershed. Because groundwater is not visible, it is easy to forget about its importance. However, if we fail to protect the quality of our groundwater, a most important local resource could readily be degraded. Groundwater in the watershed is a renewable resource and it can be sustainable if it is wisely managed. At present, some local domestic water use is largely non-consumptive because most of the water is returned to the aquifer through septic systems. Water extracted for use in urban areas or for irrigation of crops, golf courses, and lawns is not returned to the aquifer and thus can potentially reduce the volume of water stored in the system. Reduced groundwater volume can in turn lower the water table, affecting surface waters that are in equilibrium with the water table or that receive groundwater discharge.

Most of the watershed is underlain with Coldwater Shale bedrock, which contains no aquifers. The only groundwater source is the water located in the coarse textured drift material left by the glaciers. These glacial sources typically yield high amounts of groundwater (20-1,400 gallons per minute) and are very vulnerable to groundwater pollution.

The soils in the watershed are generally very permeable to water, and as a result much of the precipitation infiltrates the soils and moves across the landscape via groundwater flow paths. This is the primary way in which local groundwater aquifers are recharged in the long term; some recharge also occurs by seepage out of lakes and wetlands to the groundwater. Discharge of groundwater back to the surface provides much of the water in our streams and lakes. Despite these exchanges, however, the residence time of water in the aquifers (i.e., the time it takes to completely flush the groundwater and replace it with new water) is long, reflecting the immense volume of water stored below ground.

Groundwater discharge to streams, lakes, and wetlands controls both the quantity and quality of many of our surface waters. Residents often refer to a particular lake or stream as being "spring-fed", which they view as a positive feature. Groundwater inputs tend to be stable over time and maintain water bodies even during relatively dry years. Local streams are kept cooler during the summer by groundwater inputs and thereby can support trout. As water infiltrates through soils and travels through underground flow paths, filtration and absorption effectively remove many kinds of contaminants. This is one reason that the water that exits from underground to discharge into surface waters tends to be of better quality than if the water had flowed overland to reach those water bodies.

One consequence of the high rate of exchange of water between the land surface, groundwaters, and surface waters is that our groundwater aquifers are highly susceptible to contamination originating at the land surface (Rheaume 1990). The long residence time of water in the aquifers means that once they are contaminated, it will take many, many years for their water quality to be restored. A relatively small quantity of chemical pollutants, if stored or discarded improperly at or beneath the land surface, can degrade the utility of vast amounts of groundwater before the problem is even noticed. It is thus vital that all residents, farmers and businesses in our area understand the vulnerability of our groundwater resources. Users must maintain septic systems and apply chemicals to crops, golf courses, yards, and water bodies wisely and only when needed. The Home-A-Syst booklets, available through MSU Extension (http://www.msue.msu.edu/portal/), are a useful resource for residents interested in reducing their impact on our groundwater and surface waters. Chemical pollutants can also enter the groundwater from sources such as leaking underground storage tanks and abandoned well heads.

Threats

Increased groundwater withdrawal to meet the demands of a growing population or water-demanding industries is a threat. Despite a general abundance of groundwater in the watershed, there is growing concern about the availability of good quality groundwater for municipal, industrial, agricultural and domestic use, while maintaining natural flow regimes to our lakes, streams and wetlands. Increased withdrawal can cause groundwater overdraft, which occurs when water removal rates exceed recharge rates. This depletes water supplies and may even cause land subsidence (the gradual settling or sudden sinking of the land surface from changes that take place underground).

In addition to groundwater withdrawals, increases in impervious surface and soil compaction limit infiltration and reduce groundwater recharge. These land use changes along with improvements in drainage efficiency (adding drain tiles, storm drains and ditches) further reduce groundwater recharge. Extensive drainage in parts of the watershed, for example in the Gun River plain, has lowered the groundwater level by

several feet. The reduction in infiltration alters the hydrology of surface water causing increased flooding and streambank erosion.

Groundwater contamination can often be linked to land use. What goes on the ground can seep through the soil and turn up in drinking water, lakes, rivers, streams and wetlands. Activities in urban areas that pose significant threats to groundwater quality include industrial and municipal waste disposal, road salting, and the storage of petroleum products and other hazardous materials. In rural areas, different threats to groundwater quality exist such as animal waste, septic systems, fertilizers and pesticides. Table 17 lists common groundwater contaminant sources.

Source	Contaminant
Salting practices & storage	Chlorides
Solid waste landfills	Hazardous materials, metals
Snow dumping	Chlorides
Industrial uses	Hazardous materials
Agricultural fertilizers	Nitrate, phosphorus
Households	Hazardous materials
Manure handling	Nitrate, pathogens
Gas stations	Hydrocarbons, solvents
Home fertilizer	Nitrate, phosphorus
Auto repair shops	Hydrocarbons, solvents
Septic systems	Nitrate, pathogens
Recycling facilities	Hydrocarbons, solvents
Urban landscapes	Hydrocarbons, pesticides, pathogens
Auto salvage yards/junk yards	Hydrocarbons, solvents
Agricultural dealers	Hydrocarbons, pesticides, nitrates
Underground storage tanks	Hydrocarbons
Agricultural feedlots	Nitrate, pathogens
Industrial floor drains	Hydrocarbons, solvents

 Table 17.
 Common groundwater contaminant sources.

Contaminated sites come either under the jurisdiction of federal Superfund program, or under Part 201 of the Natural Resources and Environmental Protection Act, Public Act 451 of 1994, as amended. There are six federal Superfund sites in the watershed: 1) Allied Paper, Inc./Portage Creek/Kalamazoo River (see PCB Contamination Chapter); 2) Auto-Ion Chemicals, Inc.; 3) K and L Avenue Landfill; 4) Michigan Disposal (Cork Street Landfill); 5) Rockwell International Corp; and 6) Roto-Finish Co., Inc. As of 1994, there were 84 "Part 201" sites (State Superfund) in Kalamazoo County and 41 in Allegan County. As of 1995 there were also 143 and 49, respectively, identified leaking underground storage tanks in those counties. It is not known how many of these sites are introducing contaminants to surface waters; all certainly have the potential to pollute ground water.

7.4. Loading to Lake Michigan

In addition to water sampling in recent years, the USGS and MDEQ evaluated potential trends for 28 water quality constituents (physical properties, major ions, nutrients, bacteria, pH and alkalinity, and suspended sediments) for selected National Stream Quality Accounting Network stations in Michigan (Syed and Fogarty, 2005). Data were collected from 1973 to 1995 from the Kalamazoo River, among others. The Kalamazoo and Muskegon Rivers showed significant positive trends (increasing concentrations) in nitrogen compounds. Due to data and analysis method limitations, the Clinton River was the only river that could be analyzed for phosphorus trends; it showed a significant negative trend in total phosphorus concentration.

Lake Michigan phosphorus levels are not in excess of GLWQA in-lake goals despite loading from tributaries. Much attention is placed on nearshore filamentous algal blooms caused by altered nutrient dynamics, suspected to be the result of the invasive zebra mussel and now its relative the quagga mussel, which has replaced zebra mussels in Lake Michigan since 2005. Nearshore algal increases in recent years are likely caused by a combination of factors which may include changes in pollutant loading from the land as well as changes in the Great Lakes food web.

8. Development of the Kalamazoo River Watershed Management Plan

This Watershed Management Plan was developed utilizing available data from a library of existing publications along with input from stakeholders. The planning process included:

- soliciting stakeholder input;
- reviewing previous studies and reports;
- conducting research on topics of concern;
- attending meetings of various watershed partners;
- supporting MDEQ modeling efforts:
- developing and interpreting models for the project; and,
- reviewing existing models and trends.
- 8.1. Public Input and Stakeholder Concerns

The results from previous public summary documents (1998 Remedial Action Plan and more recent Area of Concern documents, TMDL Implementation Plan), public forums (2005 Watershed Summit, 2007 Watershed Technical Summit), steering committee meetings (quarterly TMDL Steering Committee, infrequent TMDL Technical Committee, project Technical Committee, and TMDL Strategy Committee), and occasional attendance at subwatershed planning meetings (Gun, Rabbit, Four Townships, Portage & Arcadia Creeks, Davis Creek, Kalamazoo Stormwater Partners, and Battle Creek Areas Clean Water Partners) were utilized to identify current watershed issues and priorities. Further, during the planning process, several methods were used to engage stakeholders and invite input. These methods included a website with draft documents and feedback instructions, online videos describing the planning effort, repeated email communications to interested citizens and groups on watershed topics through the "watershed communications center", mentions of the watershed planning project during public speaking opportunities and public involvement projects (annual Kanoe the Kazoo, Carp Derby, Super Soils Saturday, trash cleanups, professional talks like 2007 State of Lake Michigan conference). Finally, subwatershed stakeholders and organizers have identified known or perceived issues within the subwatersheds documented in the plans and processes referenced in Table 1.

The KRWC maintains a website and library of watershed information often in both print and electronic formats (contact <u>krwc@kalamazooriver.org</u> for details or see <u>www.kalamazooriver.org</u>).

Public comment was invited on the draft final plan for one month in January of 2011using our e-mail list of over 350 watershed partners and a summary of feedback is included in Attachment 10.

8.2. Water Quality Evaluation: Linking Pollutant Loads to Water Quality

As is the case for most watersheds, water quality is impacted by many factors. The ways in which we use and alter land in the watershed can have a direct impact on the water that runs off into lakes, streams and wetlands. Associated with the project, the MDEQ analyzed the hydrology of the Kalamazoo River watershed as well as the Dickinson Creek subwatershed. The Project team also conducted extensive modeling to calculate watershed loading, buildout, and future loading scenarios and associated costs.

MDEQ Hydrologic Studies In Brief

Kalamazoo Hydrologic Study

The Kalamazoo River Watershed Hydrologic Study (MDNRE, 2008a) was conducted by the Hydrologic Studies Unit (HSU) of the Michigan Department of Environmental Quality (MDEQ) to better understand the watershed's hydrologic characteristics. Study link: <u>http://www.michigan.gov/documents/deq/lwm-nps-kalamazoo_229438_7.pdf</u>.

Key finding - Hydrologic characteristics of the watershed were evaluated to provide a basis for stormwater management to protect streams from increased erosion and flooding and to help determine the watershed management plan's critical areas. The 50 percent chance (2-year) 24-hour storm is used in the hydrologic modeling. Relatively modest, but frequent, storm events, such as the 50 percent chance storm, have more effect on channel form than extreme flood flows. Unless properly managed, increases in runoff from 1- to 2-year storms increase channel-forming flows, which increase streambank and bed erosion as the stream enlarges to accommodate the higher flows. Flashiness increases have been identified at seven USGS gages in the Kalamazoo River watershed.

Dickenson Hydrologic Study

This study (MDNRE 2008b) analyzed Dickenson Creek. Study link: http://www.michigan.gov/documents/deq/lwm-nps-dickinson_265808_7.pdf Key finding - The hydrologic analysis indicates channel-forming peak flows have been declining, but may increase in the future due to urbanization and the associated imperviousness. Morphologic analysis of the stream at Michigan Avenue indicates moderate to high bank erosion potential and that the stream's power exceeds the resistance of most of the channel bed material, also indicating potential erosion. The stream channel may be adapting to a higher flow regime, or the results may be distorted by excess sand load from construction in the area. Morphologic analysis of the stream near the mouth indicates low to high bank erosion potential and that stream power approximately equals the resistance of most of the channel bed material, indicating approximate equilibrium. The most actively eroding reach is apparently an isolated problem, but the meander cutoffs that occurred during 2008 illustrate the potential rate of the stream's response to erosive flows.

If not properly managed, runoff from future development in the middle and lower watershed has the potential to increase channel-forming peak flows, the duration of channel-forming flows, and the frequency of those flows because the impervious areas may, by themselves, generate higher peak flows than the entire watershed would have previously. Protecting this stream from both higher flows and longer durations of channel-forming flows is important to prevent destabilizing the stream channel. Unless the increased runoff can be mitigated by infiltration or reuse, extended duration of higher flows is likely.

Watershed Runoff, Buildout, Phosphorus TMDL, and Cost Analysis

In order to characterize and evaluate the potential impacts from land use change in the Kalamazoo River Watershed, modeling efforts were conducted in conjunction with this watershed planning process, including:

- Land use summary
- Buildout Analysis and Urban Cost Scenarios (Kieser & Associates (K&A), LLC, Attachment 3)
- Buffer Analysis (K&A, Attachment 7)
- Stormwater BMP Tool and Guide (K&A, Attachment 8 printout of Microsoft Excel 2007 spreadsheet tool worksheets; available online for download from www.kalamazooriver.org)

Overall Land Use

The overall land use breakdown by category in the Kalamazoo River Watershed was generated for consideration and use in additional modeling exercises and is summarized in Table 3 (see Attachment 3 for full methodology). The land use distribution was calculated using the most recent land use data layer available from the Michigan Geographic Data Library (IFMAP 2001 (Integrated Forest Monitoring Assessment Prescription) land use/land cover dataset downloaded from:

<u>http://www.mcgi.state.mi.us/mgdl/?rel=ext&action=sext</u>). Agriculture (including row crops, orchards and pasture) comprises nearly half of the land cover in the watershed with over 615,000 acres. Second to agriculture are forest covered lands. Over one fifth of the land area in the watershed is classified as forested. This unique make up of land uses in the watershed was used to determine sources of the highest runoff volumes and pollutant loads.

Subwatershed Management Unit Land Use

Land use was also broken down at the subwatershed level in order to prioritize runoff and loading from specific contributing streams. Table 4 shows the land use breakdown by category for selected subwatersheds of the Kalamazoo River Watershed. The distribution of land uses in these subwatersheds can be substantially different from the watershedwide distribution. Subwatersheds such as Portage-Arcadia Creeks, Mainstem 3 Corridor (M3C), Greater Battle Creek, and Davis Creek have a much higher percentage of urban land uses. The Battle Creek River, Rice Creek, and Rabbit River subwatersheds have substantial land areas used for agriculture. These land use distinctions at the subwatershed level help inform this WMP when selecting appropriate types of management practices for restoration and protection. Table 5 shows a similar land use breakdown for the areas designated as Zone A, B and C (see Figure 3). These zones are areas within the Kalamazoo River Watershed that are not currently covered under an approved watershed management plan. The land use distribution shows limited urban or suburban development within any of these zones. The main land use in these areas is agriculture, followed by forested land cover. Each of the zones has anywhere from 13% to over 20% wetland coverage as well.

Lake Allegan/Kalamazoo River Phosphorus Total Maximum Daily Load

One of the major water quality problems in the Kalamazoo River watershed is nutrient enrichment of Lake Allegan, a 1,650-acre impoundment on the Kalamazoo River mainstem west of the City of Allegan. The lake sits approximately 30 miles upstream of Lake Michigan. The problems in Lake Allegan associated with the over-enrichment of phosphorus include nuisance algal blooms, low oxygen levels, poor water clarity, and a fish community heavily unbalanced and dominated by carp. Due to these impairments, in 2001 the MDEQ developed a Total Maximum Daily Load (TMDL) for total phosphorus for the entire watershed upstream of Lake Allegan. An average in-lake total phosphorus concentration of 60 micrograms per liter (*ug*/L, or ppb) was set for Lake Allegan for the period April to September (MDEQ, 2001). Due to settling of phosphorus in the lake, the concentration goal was recognized as 72 *ug*/L in the river where it flows under M-89 representing the inlet of the lake. In addition to the total phosphorus concentration goal in the lake, the TMDL established other water in-lake quality goals listed in Table 18.

Table 18. Additional in-lake water quality goals established as part of the Lake Allegan TMDL(source: DEQ 2001).

Parameter	Desired Attribute/Goal	2001 Condition (in Lake Allegan)
Chlorophyll a	30 ug/L (Apr-Sept average)	67 ug/L (average Apr-Sept, 1999)
Dissolved Oxygen	5 mg/L (daily minimum)	3.1 mg/L (daily minimum)
Secchi Depth (Transparency)	3.5 feet (Apr-Sept average)	2 feet (Apr-Sept average)
Carp/Catfish	30% (community average)	87% (community average)

The TMDL also stipulates the monthly loads for point sources and non-point sources measured at M-89 in order to meet the in-lake phosphorus goal for Lake Allegan. Point sources were given a collective, monthly waste load allocation of 8,700 pounds per month of total phosphorus from April-June each year and 6,700 pounds per month of total phosphorus from July-September. For the non-point sources, a load allocation was set which limits monthly total phosphorus to 9,800 pounds of total phosphorus from April-June and 4,088 pounds of total phosphorus from July-September (the load allocations include the following sources: all upstream non-point sources, Dumont Creek loads, immediate drainage to Lake Allegan, and precipitation). A breakdown of the allocations, including a margin of safety, is included in Table 19.

sources and wasteroad anocation for point sources to Lake Anegan (source. DEQ, 20										
	Monthly Goal for April-June Period	Monthly Goal for July- September Period								
Load Allocation (NPS):	(Pounds of 7	Fotal Phosphorus)								
Dumont Creek	96	34								
Immediate Drainage	62	62								
Precipitation	42	42								
Kalamazoo River (Inlet)	9,600	3,950								
Load Allocation Total	9,800	4,088								
Waste Load Allocation (PS)	8,700	6,700								
Margin of Safety	100	50								
Total Monthly Load Goal	18,600	10,838								

Table 19. Monthly TMDL total phosphorus loading goals under the load allocation for non-point sources and wasteload allocation for point sources to Lake Allegan (source: DEQ, 2001).

Empirical Loading Model and Buildout Related to the Phosphorus TMDL

K&A conducted empirical runoff and loading modeling for the entire Kalamazoo River watershed in order to determine which areas contribute disproportionate nutrient and sediment loads. Modeling methodology and additional build-out results are presented in a technical report in Attachment 3. Generally, the Long Term Hydrologic Impact Assessment (LTHIA) tool was used to generate loading estimates.

Assuming that no new BMPs or low impact development practices are used in the future, K&A modeled the predicted phosphorus loading in 2030. The predicted increase was estimated using the Land Transformation Model land use layer for Michigan that predicts future land use change based partly on population growth (see Attachment 3 for full details on the Land Transformation Model). Results showed an increase in non-point source total phosphorus loading to Lake Allegan by almost 3,000 pounds per month. If this predicted growth occurs without new requirements for on-site stormwater controls, the necessary load reductions to meet the TMDL will greatly increase. By 2030, non-point source total phosphorus loads would have to be reduced by over 7,100 pounds per month from April-June and 12,800 pounds per month from July-September. Figure 25 shows both 2001 and 2030 non-point source total phosphorus loading.

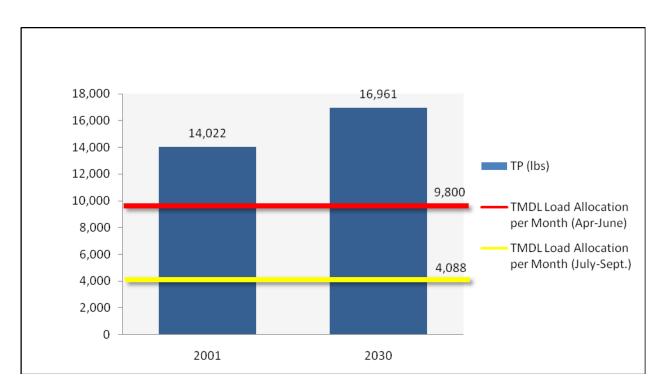
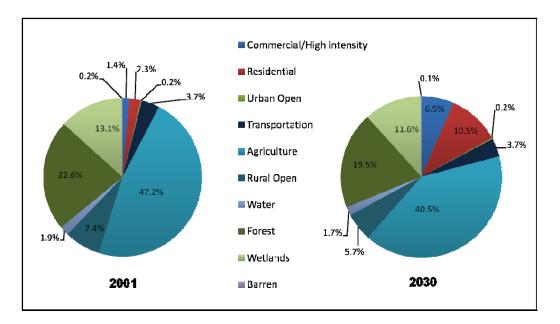



Figure 25. Comparison of non-point source total phosphorus loading from 2001 and 2030 land uses for the Lake Allegan TMDL Watershed (see Attachment 3).

The increase in pollutant loads is directly related to the predicted urbanization of the watershed by 2030. K&A compared the future land use breakdown with the 2001 land use breakdown. Figure 26 shows the percentages of each land use for 2001 and 2030 for the entire watershed.

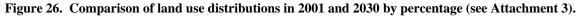


Figure 26 depicts notable increases in the following urban land uses:

- Commercial/high intensity urban (increase from 1.4% to 6.5% of the watershed)
- Residential/low intensity urban (increase from 2.3% to 10.5% of the watershed)

These predicted urban land uses will likely replace agriculture, forests and wetlands in 2030. These current land covers, which generally have a much lower pollutant loading on a per acre basis when compared to urban land uses, exhibit the following watershed-wide decreases by 2030:

- Agriculture is predicted to decrease by 6.7%
- Forests are predicted to decrease 3.1%
- Wetlands are predicted to decrease by 1.5%

A summary of the runoff and associated pollutant loading for 2001 and 2030 is shown in Figure 27. Runoff and total phosphorus show the greatest increase by percentage from 2001 to 2030. Modeling results show that overland runoff, often in the form of stormwater, will have a major impact on the watershed if left untreated. Current watershed pollutant loading is projected to increase by 12% for sediments and 26% for total phosphorus, resulting primarily from the increase in urban land use (see Figure 7 in Attachment 3). For this reason, urban and suburban areas remain critical for the implementation of retrofit and new Best Management Practices (BMPs). Stormwater runoff volumes are projected to increase by 25% which could have major impacts on small streams and tributaries to the river as a result of increased erosion and scour and decreased aquatic habitat. It will be critical that undeveloped, rural areas enact ordinances and regulations for stormwater management.

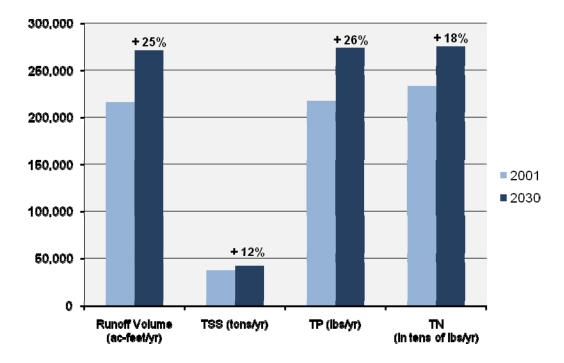


Figure 27. Current (2001) runoff, total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN) loading and predicted increases in 2030 (see Attachment 3).

Future Phosphorus Loads

The phosphorus loading associated with each land use category for both 2001 and 2030 is shown in Figure 28. These values are an indicator of potential sources and causes of excess phosphorus loading at the watershed scale. In 2001, the two major sources of phosphorus are linked primarily to urban land use and agriculture. Impervious surfaces like roads and parking lots are the highest single source of loading in both 2001 and 2030. By 2030, urban land use is predicted to increase exponentially, while loading from agriculture may decrease slightly. The build-out report has watershed maps that show sources of total suspended solids, total nitrogen and runoff volume in 2001 and 2030 (Attachment 3, Appendix B). Land use change by category for each township is also included in the report (Attachment 3, Appendix A).

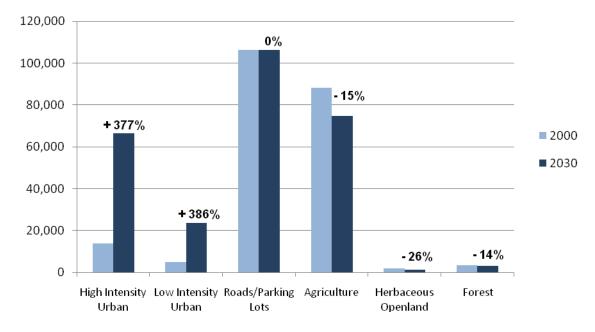


Figure 28. Sources of total phosphorus loading (in lbs/year) per land use in the Kalamazoo River Watershed in 2001 and 2030 (see Attachment 3).

Implications By Jurisdictional Boundary

The increase in urban land cover and pollutant loading is most relevant at the jurisdictional boundary level. Jurisdictions such as townships have authority to pass regulations and ordinances to manage stormwater runoff from future growth and the associated pollutant load. For this reason, the K&A build-out report provides a land use breakdown for 2001 and 2030 for each township and/or city in the watershed (see Attachment 3). In terms of the greatest overall impact at the entire watershed scale, the ten townships that are predicted to have the greatest increase in urban land use growth are presented in Table 20. Currently, these townships generally have a strong agricultural and rural character. They do not fall under federal stormwater regulations and therefore do not currently have a legal mandate to develop policies to require stormwater controls for new development.

Table 20. Sources of total phosphorus loading (in lbs/year) per land use in the Kalamazoo River Watershed in 2001 and 2030 (see Attachment 3). These townships have the highest predicted urban land use growth.

Township	Total predicted increase in urban areas (acres)	% of total urban increase for the Kalamazoo River watershed
Cheshire	6,934	4.01
Salem	5,911	3.42
Trowbridge	5,911	3.42
Pine Grove	5,478	3.17
Allegan	5,253	3.04
Dorr	5,140	2.97
Marengo	4,930	2.85
Otsego	4,603	2.66
Monterey	4,470	2.58
Watson	4,351	2.52

Note: All township locations are shown in Figure 29, except for Marengo Township which is located east of the City of Marshall.

Townships in the western portion of the watershed, primarily Allegan County, are generally predicted to build out most significantly due to their proximity to key features like Lake Michigan, proximity to urban centers, road infrastructure, and proximity to natural areas (e.g., Allegan State Game Area) (Figure 29).

Townships listed in Table 21 show increases in runoff that account for between 3.2% and 5.1% of the total predicted increase in runoff watershed-wide indicating that the overall watershed is substantially impacted by these key townships. These townships also show substantial potential increases in other non-point source loading if no BMPs or stormwater controls are put in place with the predicted growth. Total suspended solids are predicted to increase by 155 to almost 250 tons per year per township. Total phosphorus is predicted to increase by 1,800 to 2,900 pounds per year per township. Total nitrogen is predicted to increase by 14,500 to over 23,000 pounds per year per township. For all of the components listed in Table 21, these townships collectively comprise over 25% of the increases expected on a watershed-wide basis for runoff, solids, phosphorus and nitrogen.

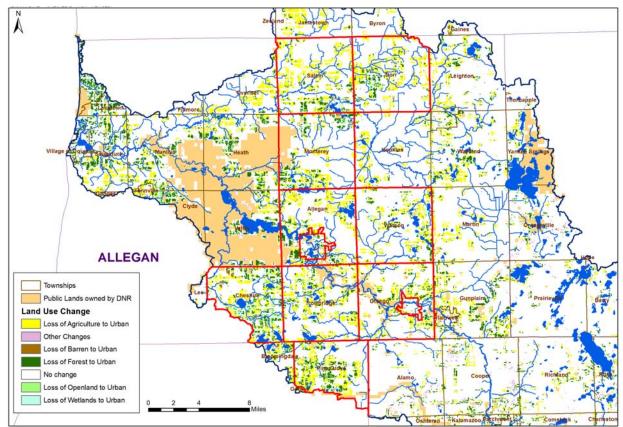


Figure 29. Townships with the greatest predicted increase in urban land cover by 2030 are outlined in red and include Cheshire, Salem, Trowbridge, Pine Grove, Allegan, Dorr, Otsego, Monterey, and Watson (see Attachment 3).

	Ru	noff	T	SS	Т	Р	TN		
Township Name	volumetotal(acre-changefeet/yr)(1)		Change in load (tons/yr)	in load total		% of total change	Change in load (lbs/yr)	% of total change	
Cheshire	2,782	5.1	249	5.7	2,900	5.2	23,080	5.5	
Salem	2,217	4.0	151	3.4	2,330	4.2	15,238	3.7	
Trowbridge	1,920	3.5	154	3.5	1,916	3.4	13,932	3.3	
Dorr	1,844	3.4	133	3.0	1,894	3.4	12,748	3.1	
Allegan	1,848	3.3	155	3.5	1,884	3.4	14,089	3.4	
Heath	1,697	3.1	150	3.4	1,856	3.3	14,601	3.5	
Monterey	1,772	3.2	155	3.5	1,861	3.3	14,500	3.5	

Table 21. Townships predicted to have the greatest increase in runoff and pollutant loads as a percentage of the increases predicted watershed-wide (see Attachment 3).

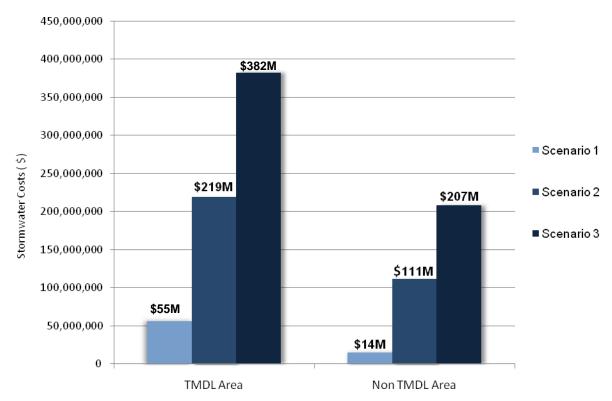
Note: "Percent of total change" categories represent the total change on a watershed-wide basis.

Costs of Overall Stormwater Treatment Scenarios

In order to characterize the necessary load reductions to meet TMDL water quality goals and the associated costs, two approaches were used for the watershed management plan. First, as part of K&A's empirical modeling efforts, stormwater control costs were

analyzed (see Attachment 3 for full details). The stormwater cost analysis provides a fixed estimation of the costs associated with a number of watershed scenarios, while the BMP tool allows users to enter in site-specific information so they can quickly calculate expected non-point source loading from: a) specific land uses; b) load reductions associated with user-selected BMPs; and, c) the approximate costs associated with the BMPs.

K&A completed a simple cost analysis as an additional illustration for decision-makers to emphasize the importance of implementing stormwater runoff controls and policies as early as possible to meet both TMDL load allocation goals and protect overall water quality. **Modeling results indicated that the trend in the Kalamazoo River watershed by 2030 will be that largely rural townships and smaller municipalities will experience more rapid growth than the larger cities that have already experienced substantial build-out.** The purpose of the cost analysis was therefore intended to capture: 1) current costs to reduce phosphorus loading by half to satisfy TMDL goals; and, 2) future predicted costs to reduce future phosphorus loading, if urban growth continues with no stormwater controls.


The assumptions used in the simple analysis are listed in Attachment 3. Three scenarios were developed to determine costs for phosphorus reductions in the Kalamazoo River watershed:

1) Stormwater ordinances are passed for the entire watershed now that require all new development to build on-site treatment. In this scenario costs to a municipality represent only those required to retrofit current stormwater sources with BMPs to reduce 2001 loading levels by 50% for TMDL requirements;

2) Municipalities must assume costs to reduce their 2030 loading by 50% (this represents a theoretical municipal stormwater regulation); and,

3) Municipalities in 2030 under the TMDL must assume costs to reduce their 2001 loading by 50% (like scenario 1), in addition to offsetting any new loading since 2001.

Scenario 1 was developed to show stakeholders the lowest possible stormwater treatment costs, which is treating 50% of the 2001 loading. This scenario assumes that a municipality currently has a stormwater ordinance in place which requires all new development to treat stormwater on-site (e.g., City of Portage or Oshtemo Township). Scenario 2 was developed to show potential future stormwater costs primarily for areas not under the phosphorus TMDL. This scenario assumes no stormwater ordinance is in place and that future stormwater regulations (in 2030) require the municipality to reduce 50% of their loading. It is important to note this scenario falls short of compliance with the Lake Allegan/Kalamazoo River TMDL. The third scenario was developed to show how the cost of stormwater treatment exponentially increases if no stormwater ordinances are enacted by 2030. The scenario assumes a municipality is required to reduce their loading to 50% of their 2001 loading level (which is compliant with the current requirements of the phosphorus TMDL). This would be in addition to offsetting any new loading since 2001.

The cost results from these three scenarios are shown in Figure 30.

Figure 30. Increasing cost for all municipalities in each area (in millions of 2010 dollars) for stormwater controls to treat phosphorus to the levels specified in each scenario for both Lake Allegan TMDL area and non-TMDL areas (downstream of Lake Allegan) (see Attachment 3).

In general, cost analyses show that stormwater retrofits in 2030 would cost municipalities on average almost seven times the cost of controlling stormwater in such a way that would hold loading at the 2001 level. This difference represents the potential cost savings that would be realized if a stormwater ordinance were enacted that would require all new development to infiltrate or treat stormwater on-site. In contrast, municipalities such as the City of Portage and Oshtemo Township that have already passed stormwater ordinances will have limited to no new phosphorus loading from future build out and therefore no additional costs. In terms of the existing phosphorus TMDL, it is important to note that this limited analysis only calculates costs associated with commercial/ high intensity urban loading and not other sources of nonpoint source runoff and pollutant loading (such as low intensity land use), while municipalities that are regulated under the municipal separate storm sewer system permit (MS4) must consider all nonpoint sources when implementing stormwater ordinances and regulations. For instance, many of the townships (e.g., Allegan Township) in the watershed are expected to have large increases in residential/low intensity land use, which may result in increased storm sewer infrastructure costs, substantial increases in future loading and thus, future retrofit costs that would otherwise have been borne by private developers if stormwater ordinances were in place now.

Stormwater Treatment Costs By Jurisdiction

As an example of how stormwater treatment costs will affect specific jurisdictions, Table 22 shows the stormwater costs associated with each scenario for specific municipalities. For the smaller municipalities not subject to MS4 permit requirements (Allegan, Marshall, Otsego and Plainwell) listed in the table, stormwater costs from Scenario 1 to Scenario 3 more than double. This table can also be used to understand the potential cost savings for cities if they were to implement stormwater control regulations now rather than waiting until 2030 to meet TMDL loading goals. For townships listed in Table 22, the cost differentials between Scenario 1 and Scenario 3 are much greater than for the cities because major cities are effectively already built out. The median increase in cost is almost 14 times greater for the townships when compared to implementing an ordinance now. Trowbridge Township, which has a substantial portion of its land area draining to Lake Allegan and falls under the TMDL, shows an increase in costs by almost 40 times between Scenario 1 and 3.

	TP Load	l (lbs/yr)	Cost of	Stormwater Con	trols (\$)
Name	2001 TP from urban- commercial	2030 TP from urban- commercial	Scenario 1 (in millions)	Scenario 2 (in millions)	Scenario 3 (in millions)
City of Allegan	506	789	\$2.5	\$3.9	\$5.4
City of Battle Creek	1,642	2,589	\$8.2	\$12.9	\$17.7
City of Kalamazoo	1,822	2,231	\$9.1	\$11.2	\$13.2
City of Marshall	106	382	\$0.5	\$1.9	\$3.3
City of Otsego	199	334	\$1.0	\$1.7	\$2.3
City of Plainwell	174	279	\$0.9	\$1.4	\$1.9
Albion Twp	15	739	\$0.75	\$3.7	\$7.3
Allegan Twp	417	2,225	\$2.0	\$11.1	\$20.1
Cheshire Twp	37	2,574	\$0.2	\$12.9	\$25.6
Dorr Twp	330	2,253	\$1.6	\$11.3	\$20.9
Salem Twp	331	2,648	\$1.7	\$13.2	\$24.8
Trowbridge Twp	93	2,007	\$0.5	\$10.0	\$19.6

Table 22. Stormwater control scenarios in cities and townships with high stormwater treatment costs related to increases in urban loading from new development projected for 2030 (see Attachment 3).

Note: None of the cost scenarios are adjusted for inflation or discounted in any way.

Kalamazoo River Urban Stormwater BMP Screening Tool

In addition to the fixed load reduction and stormwater cost analysis in the build-out report (Attachment 3), the Kalamazoo River Urban Stormwater BMP Screening Tool (K&A, 2010b) was designed to assess urban non-point source BMP applications for any critical area in the watershed. It provides preliminary pollutant loading and runoff reductions with the associated long-term costs. Attachment 8 includes printed copies of the spreadsheet tabs.

Under Tab A the user must select the township or city where the critical area is located. This loads the specific precipitation value for the selected jurisdiction. The tool provides the flexibility to enter the specific land use categories that make up the critical area or the user can select pre-defined land use breakdowns for specific cities and townships by using the look-up table. The tool also allows the user to enter a user-defined percentage imperviousness factor or use the default value for each land use. Once the land use is entered in acres, the pollutant loading for total phosphorus, total suspended soils and runoff volume is populated.

Under Tab B the user must enter the acreage of the critical area that is being treated by a particular BMP. Five urban stormwater BMPs have been loaded into this first version of the tool. These BMPs include:

- Grass Swales
- Extended Dry Detention Basin
- Wet Detention Basins
- Rain Gardens
- Constructed Wetlands

These BMPs were selected after researching available data for different urban stormwater BMPs. The efficiencies and associated costs for these BMPs were readily available and sufficient research was available to assure the data were reliably accurate. In addition, these BMPs are commonly used in the Kalamazoo River Watershed and generally recommended in this watershed management plan to reduce stormwater impacts.

Once the data are entered into Tab B, a future loading (or post-BMP implementation) breakdown is populated for total phosphorus, total suspended solids and runoff volume for the critical area. In addition, a detailed breakdown of costs is included for each BMP. The estimated cost breakdown includes the average cost per unit of load or volume reduction, the BMP base cost, engineering and planning/landscaping cost, and a total BMP costs.

While the BMP tool directly provides an estimate of the current loading from a particular critical area and the associated load reductions and costs for selected stormwater BMPs, the tool can be used in a number of different ways. Guidance on the different applications of this tool and instructions on how to apply them are included in

Attachment 8. The following applications have been identified for using the tool to assess the restoration or conservation of critical areas to:

- Calculate general stormwater treatment costs in a critical area
- Selectively calculate runoff, total phosphorus and sediment loading from specific portions of a township or city and estimate BMP implementation costs (for example, on a project-by-project basis)
- Compare and select the most cost-effective reductions by testing and screening different BMPs
- Track progress toward TMDL non-point source load allocation goals using installed BMPs in a critical area or throughout a jurisdiction
- Calculate BMP costs to reduce current total phosphorus load in order to comply with water quality standards or the TMDL
- Assess potential future loading (or "prevented" future loading) from a critical area (e.g., to determine potential future benefits of conservation easements on critical natural areas)

This tool was developed as a framework for calculating loading reduction and BMP costs for critical areas or other target areas. The tool has unlimited potential for adding additional urban stormwater BMPs if data are available. Individual stakeholders can apply this tool to their critical area to determine current and "future" loading (by simply changing the land use distribution). The tool allows stakeholders to explore the pollutant loading and runoff reductions from different recommended preventative and restorative BMPs.

Other Stormwater Loading Tools

Another loading/BMP tool that is available in the Kalamazoo River watershed, but was developed separately from this project, is NutrientNet. Technical service providers from the Calhoun and Allegan Conservation Districts have used this online tool in a past project to calculate load reductions from agricultural BMPs. The tool provides a long list of agricultural BMPs that are recommended by NRCS (http://kalamazoo.nutrientnet.org). A preliminary user's manual has been developed for NutrientNet and is available from the Gun Lake Tribe. This tool can also be used to calculate nutrient and sediment reductions from a limited number of common stormwater BMPs (extended dry detention, wet detention, retention and swales). The tool does not have the capability to estimate BMP costs like the Kalamazoo River Urban Stormwater BMP Screening Tool can.

One feature that NutrientNet offers that could be utilized by watershed stakeholders is the BMP tracking tool. This easy-to-use feature allows individuals to submit completed BMP projects to an administrator. The administrator can then upload all non-point source BMPs along with the associated pollutant reduction information. The tool tracks cumulative reductions on an annual basis at the subwatershed and watershed level. Because this tool has already been developed, it is the preferred tracking tool for load reductions in the Kalamazoo River Watershed at this time. A system that allows individual users to submit projects is ideal in such a large watershed. The administrator role allows for checking of data and a centralized entity to ensure quality control and

disseminating data to the entire watershed. As of September 2010, the tool is administered by the Gun Lake Tribe. More information about the Targeted Watershed Grant Project is available at <u>http://www.envtn.org/Kalamazoo_River_Wtrshed.html</u>.

9. Prioritization - Areas, Pollutants, Sources

Priority areas were identified in the watershed based on the areas that are contributing, or have the potential to contribute, non-point source pollution at rates that are disproportionate to their area in a watershed. As discussed in Section 7.2 above, our focus is on nutrients, sediments, pathogens, and in coldwater streams, temperature. While both nitrogen and phosphorus are necessary ingredients for eutrophication (i.e., excessive algal and plant growth), phosphorus tends to be the key limiting factor in lownutrient, high-quality waters of the region, so here we emphasize phosphorus. However, control of nitrogen is also worthwhile, as excess nitrogen can be involved in eutrophication of wetlands and presents a health hazard in drinking water supplies in the form of nitrate. Fortunately, many of the measures to mitigate phosphorus loading also help reduce nitrogen loading to surface waters, although nitrogen is capable of traveling much longer distances through groundwater flow paths.

There are many ways to approach the problem of non-point source pollution, and in fact a multi-faceted approach is imperative in a watershed as complex as that of the Kalamazoo River. Yet prioritization is necessary given limitations in funds and human resources to take on the problem. By identifying priority areas, implementation can be targeted to the places where the most benefit can be achieved. Naturally, best management practices are best practiced everywhere they can be, but a greater return on investment can be achieved in specific areas where problems are known to be most acute. The scientific literature contains many examples documenting how the majority of the non-point source pollution reaching rivers or lakes can originate from a small fraction of the watershed. Such critical areas are often in close proximity to water bodies, or where hydrological linkages are enhanced via constructed drainage systems (e.g., storm sewers, agricultural land drainage), or where soils and topography facilitate the overland movement of water, sediments and nutrients to water bodies.

In Table 23 we summarize our prioritization of subwatersheds in need of actions to mitigate non-point source pollution.

Designated Use		Zone C	Rice, Battle Creek, Dickinson Creeks	Greater Battle Creek	Zone B	Main-stem 3 Corridor	Four Township	Davis Creek	Portage & Arcadia Creeks	Gun River	Rabbit River	Zone A	Lake Allegan
	Predominant Land Cover	Rural-Agric.	Rural- Agric.	Urban- Suburban	Rural- Agric.	Mix	Rural- Agric.	Urban	Urban- Suburban	Rural- Agric.	Rural- Agric.	Rural- Agric.	Mix
	Notes on coverage	Includes Swain's Lake Drain		Includes Crooked Creek					Includes Axtell	Inc. Fenner Creek	Inc. Red Run Drain		
Agri- cultural, Industrial Water Supply, Public Water, Navigation	Status	Met or NA	Met or NA	Met or NA	Met or NA	Met or NA	Met or NA	Met or NA	Met or NA	Met or NA	Met or NA	Met or NA	Met or NA
Warm Water Fish	Status	Imp						Imp- confluenc e to Cork St.					
	Pollutant(s) Causing Impairment(s) Pollutant(s) Causing Impairment(s)	Anthro- pogenic Substrate Alterations, Flow Regime Alterations											

Table 23a. Kalamazoo River Watershed critical areas and uses.

Designated Use		Zone C	Rice, Battle Creek, Dickinson Creeks	Greater Battle Creek	Zone B	Main-stem 3 Corridor	Four Township	Davis Creek	Portage & Arcadia Creeks	Gun River	Rabbit River	Zone A	Lake Allegan
Other Aquatic Life	Status	Imp – Swain's Lake Drain		Imp – Crooked Creek						Imp – Fenner Creek and Gun River near Gun Lake	Imp – Red Run Drain	Imp – unamted tributary	Imp – Lake Allegan Water- shed
	Pollutant(s) Causing Impairment(s)	Anthro- pogenic Substrate Alterations, Flow Regime Alterations		Sediments & Siltation						Both - Anthro- pogenic Substrate Alterations, Flow Regime Alterations, Fenner - Sediments & Siltation	Cause Unknown, Direct Habitat Alteration, Flow Regime Alterations, Sediments & Siltation	Anthro- pogenic Substrate Alteration , Flow Regime Alteration	Excess Algal Growth, Phos- phorus (Total)
Partial Body Contact	Status							Imp- confluenc e to Cork St.and from Cork St. upstream	Imp – Axtell Creek and Arcadia Creek				
	Pollutant(s) Causing Impairment(s)							E. coli	E. coli				

Designated Use		Zone C	Rice, Battle Creek, Dickinson Creeks	Greater Battle Creek	Zone B	Main-stem 3 Corridor	Four Township	Davis Creek	Portage & Arcadia Creeks	Gun River	Rabbit River	Zone A	Lake Allegan
Full Body Contact	Status							Imp- confluenc e to Cork St.and from Cork St. upstream	Imp – Axtell Creek and Arcadia Creek				
	Pollutant(s) Causing Impairment(s)							E. coli	E. coli				

Inc. = includes Imp = impaired Green color = Mitigation NA = not applicable

Overall Quality Scores (3 = best)	Zone C - Head-waters	Rice Creek	Battle Creek River	Dickinson Creek	Greater Battle Creek	Zone B	Mainstem 3 Corridor	Four Townships	Davis Creek	Portage & Arcadia Creeks	Gun River	Rabbit River	Zone A - Lower river	Lake Allegan
Quality Natural Areas	2	2	2	2	2	3	2	3	2	2	2	2	3	NA
Quality of Hydrology High=Stable Quality of	3	3	2	3	2	3	2	3	1	1	2	1	2	NA
Corridor Lack of Urban Pollutants	3	3	2	2	2	3	2	3	1	2	1	1	3	NA NA
Lack of Development Pressure	2	2	2	1	2	2	2	2	2	2	2	2	1	NA
Lack of Current Agricultural Threats	2	2	2	2	2	3	2	1	2	2	1	1	2	NA
Lack of Wetland Loss	2	2	2	2	2	3	2	3	2	2	1	2	3	NA
Total Quality Score	17	16	14	14	13	20	14	18	11	12	12	12	17	NA

Table 23b. Critical area ranking based on quality metrics for each subwatershed.

Green color = Mitigation

Known impairments are listed, and a scoring system is employed to produce a rough ranking by environmental quality. The subwatersheds with the lowest overall quality scores (green highlight) include the three most urbanized areas (Greater Battle Creek, Davis Creek, Portage & Arcadia creeks) as well as the heavily agricultural Gun and Rabbit rivers. Intermediate quality scores (no highlight) indicate some problems in Rice Creek, the Battle Creek River, Dickinson Creek, and the Mainstem 3 Corridor. The remaining subwatersheds are ranked in the highest quality group (purple highlight). Lake Allegan, whose eutrophication issues are linked to a very large contributing watershed area (Baas 2009), was not ranked in this manner because problems originate upstream from multiple land uses included in agricultural, forest, urban, and other lands.

We elaborate on the rationale for this prioritization below. In all cases the land closest to the water's edge deserves the most attention because the priority pollutants we have identified – phosphorus, sediments, and pathogens – are more likely to reach the water from areas nearby. Thus riparian areas, perhaps as much as 1000 feet in width if specific detail on runoff is not available, define a zone where land use needs to be scrutinized more carefully. Importantly, where urban stormwater or agricultural drainage systems

exist, the distance of influence would be longer because runoff can travel long distances with little alteration of its pollutant load.

Land use in riparian areas throughout the Watershed was analyzed for this Plan (See Buffer Analysis in Attachment 7). Using a relatively narrow riparian area width of 50 m (164 feet) on either side of streams and along lake shores, the 2001 land cover data showed that about 3% and 23% of these narrow riparian areas are presently in urban land use and in agriculture, respectively (as a percent of all riparian areas). Estimates of loading based on general models suggest that the 23% of riparian land in agriculture contributes about 40% of the total phosphorus loading to the water bodies from the riparian areas.

The Buffer Analysis also included a modeling scenario analysis in which future land use changes were predicted using an accepted pre-existing model (Land Transformation Model). By 2030 it is predicted that about 8% of the agriculture and unmanaged land will be converted to urban and suburban development in these riparian areas. The consequences of this land use conversion for non-point source pollution are estimated to be quite significant, entailing increases in water runoff and associated loads of sediments, nitrogen, and phosphorus. This analysis underscores the importance of planning for appropriate land uses in the most sensitive lands close to the water's edge.

Table 24 provides a full breakdown of how pollutant loading and runoff to the river system will change when land is converted from natural and agricultural lands to urban. It is important to note that the land use within this riparian area will have a direct impact on water quality as the delivery of runoff and pollutants is very high due to the proximity to surface water. The particular concern for the Kalamazoo River watershed is that by 2030 runoff is projected to increase by over 23% and total phosphorus concentrations by greater than 25%. Nitrogen and sediment loads are also expected to increase as land within the riparian area is developed for urban purposes. These increases can be mitigated by enacting surface water setback ordinances, stormwater retention ordinances, green spaces or corridors, and conservation planning (see section on goals and objectives).

Loading	2001	2030	Change in Value	Percent Change
Runoff (acre-feet/yr)	8,945	11,066	2,121	23.7
TSS (tons/yr)	1,508	1,705	197	13.1
TP (lbs/yr)	8,713	10,950	2,237	25.7
TN (lbs/yr)	96,813	115,717	18,904	19.5

 Table 24. Pollutant load comparison between 2001 and 2030 land uses within 100 meter riparian area in the Kalamazoo River watershed (see Attachment 7).

In addition to mitigating future loading impacts through the use of set-backs, green spaces, ordinances and conservation planning, the current (2001) loading to the river from this riparian area can be addressed by incentivizing agriculture to install vegetative buffers along surface waters. This practice is explored further in Attachment 7. A simple

cost analysis was conducted by K&A to determine the costs and potential loading benefits from installing vegetative buffers in riparian areas across the whole Kalamazoo River watershed. Three scenarios were tested to determine what the impacts would be from converting 25%, 50%, and 75% of the agricultural land in riparian areas to vegetative filter strips. The results from the analysis are summarized in Table 25.

							Cost A	nalysis
Scenarios	Agricultural AreaTP Load fromConverted to Perennial Grass (acres)Grass		Original TP Load ⁽¹⁾ from Agriculture (lbs/year)	TP Load Reduction from Land Conversion (in 100-m buffer) (lbs/year)	Reduction from LandTP Load Reduction from AreaConversion (in 100-mAdjacent to Buffer (lbs/year)		Implement- ation Costs (in 2009 \$) (NRCS) ⁽²⁾	Estimated Cost per Pound of Load Reduction (in 2009 \$)
25%	4,729	121	916	795	1,676	2,471	\$2,137,508	\$865
50%	9,458	241	1,832	1,591	3,352	4,943	\$4,275,016	\$865
75%	14,187	362	2,748	2,836	5,029	7,865	\$6,412,524	\$865

Table 25. Buffer scenario and cost analysis for agricultural land conversion to grass filter strips (see Attachment 7).

Note:

(1) TP loads in the table above were calculated using average annual loading values (see Attachment 7).

(2) Cost calculations were done using a value of \$452/acre for buffer strip installation (2009 communication with Allegan Conservation District).

9.1. Urban/Suburban Mitigation Areas

Urban and suburban areas occupy a relatively small fraction of the Kalamazoo River watershed, but they are very important sources of non-point source pollution to surface waters. This is in part because the largest urban areas are located along the rivers (Battle Creek, Kalamazoo) and rural residential development is often concentrated along lakes and streams. Urban and suburban development brings impervious surfaces, constructed drainage systems, fertilized lawns, waste from pets and geese, leaking septage, etc., all contributing to the non-point source pollution described above. In addition, thermal pollution can occur when runoff from exposed impervious surfaces rapidly reaches streams with coldwater habitat.

Non-point source pollution in the most urbanized watersheds of the Kalamazoo River watershed has already received considerable attention in recent years. Watershed-wide analyses of pollutants can be found in the Build-Out Analysis of this report (Appendix A of that section has maps showing modeling results), as well as in the Fongers (2009) *Kalamazoo River Watershed Hydrologic Study*. These analyses point clearly to the disproportionate contributions of the most urbanized areas (particularly the "metropolitan areas" of Kalamazoo and Battle Creek), and the role of altered hydrology (i.e., the rapid drainage of stormwater into the nearest lake, stream or river). These analyses also show that smaller communities with extensive development (e.g., Wayland) can have important impacts on stream water quality, particularly where the streams are not large. Furthermore, Baas (2009) shows how urbanized areas contribute disproportionately to non-point source phosphorus loads, in addition to their point sources (i.e., permitted municipal wastewater and industrial discharges).

Specific subwatersheds with highly urbanized land cover have already developed their own Watershed Management Plans, and significant progress has been made toward mitigation of non-point source pollution in those areas. These subwatersheds include Portage/Arcadia creeks, Davis Creek, and the Battle Creek River (Table 1, Section 1.4). Nonetheless, non-point source pollution problems persist in these areas, and further attention will be required to follow through on plans and measures that have been charted out through the preparation of these subwatershed Watershed Management Plans. These plans also serve as a valuable guide to how to address problems in comparable urbanized areas that are not presently covered by a watershed management plan. Municipal Separate Storm Sewer System (MS4) permit processes also motivate discussions about how to improve stormwater management in the urbanized parts of the watershed.

Lower density residential development, referred to here as suburban development, also impacts water quality, but we have paid less attention to it in the overall Kalamazoo River watershed. Often such development occurs outside of cities and is variably regulated by township and county governments, with their relative roles varying from one county to another. The recently approved Watershed Management Plan for the Four Township Water Resources Council presents an example of how such development could be dealt with across multiple local governmental jurisdictions (FTWA WMP 2010); in that largely rural area, riparian areas of 1000 feet along lakes and streams were chosen to identify land with the highest priority for mitigation of non-point source pollution. The underlying premise is that most non-point source loading of pollutants originates close to water bodies, which is consistent with our understanding of phosphorus, sediment and pathogen movement in southwest Michigan landscapes. One could argue that the approach taken in that plan could be applied throughout the Kalamazoo River watershed to good effect.

In the urban/suburban mitigation areas, the pollutant sources are prioritized as follows:

- Stormwater runoff Hydrologic alterations that promote rapid drainage from urbanized areas result in flashy stream flow. Non-point source pollutants abound in stormwater runoff, largely as a result of abundant impervious surfaces, construction and road maintenance activities, over-fertilization of lawns, pet waste, leaf burning, and a multitude of other sources.
- Streambanks Flashy stream flow increases streambank erosion. Removal of natural vegetation also enhances erosion, and lessens the ability of the riparian zone to filter sediments and nutrients from runoff. Increased solar radiation reaching coldwater trout streams due to vegetation canopy removal can undesirably increase water temperatures.
- 3. Septage and animal waste Septic systems are suspected to be a source of nutrients and pathogens in lake areas lacking municipal sewer services. In addition, though uncommon in this watershed, the failure of sewer system infrastructure in urban areas has also led to releases of untreated wastewater. Waste from pet dogs and wildlife frequenting urban parks (e.g., Canada Geese and ducks) is another source of nutrients and pathogens.
 - 9.2. Rural/Agricultural Mitigation Areas

In general, the contribution of agricultural land to non-point source pollution of nutrients, sediments and pathogens is well understood, although loading rates vary by activity and environmental setting. Disturbance due to tillage and harvest of annual row crops, applications of fertilizers and animal manure, and concentrated livestock operations can all result in enhanced movement of sediments, nutrients, and pathogens to water bodies. Tile drainage and channelization of streams can convey water rapidly to bypass the soil and wetland filters that may once have existed, resulting in enhanced loading to water bodies.

Some subwatersheds with heavily agricultural land use and recognized problems with water quality have, with 319 grant support, already developed their own Watershed Management Plans, and significant progress has been made toward mitigation of non-point source pollution in those areas. These subwatersheds include the Rabbit River, Gun

River, Rice Creek, and the Battle Creek River (Table 1, Section 1.4). As in the case of the urban subwatersheds, these plans point the way for other subwatersheds with similar land use.

The modeling results from the Build-Out Analysis in this report (see Attachment 3) provide an indication of which rural/agricultural subwatersheds deserve the greatest priority for efforts to mitigate non-point source pollution. These results largely support the emphasis placed to date on the aforementioned watersheds: the lower portions of the Kalamazoo River Watershed including the Rabbit and Gun rivers are clearly more important sources of sediments and total phosphorus than subwatersheds with comparable % agricultural land cover in the uppermost parts of the watershed. The Rabbit and Gun rivers, as well as some adjacent subwatersheds in that area, lie on lake plain terrain and as a result more land drainage was necessary to allow agriculture there, and the soils are often less permeable to infiltration and finer in texture, making them more prone to erosive transport by overland flow. In the case of the Gun River plain where extensive wetlands once existed, the muck soils that were drained for agriculture have been subsiding/sinking due to organic matter breakdown over the decades of farming, making drainage increasingly difficult. The Gun River is above Lake Allegan, the site of a phosphorus TMDL (Section 6.3), whereas the Rabbit River is below Lake Allegan. Hence the Gun River has received more study in connection with the Kalamazoo River/Lake Allegan TMDL. It is important to remember, however, that the Rabbit River influences the loading of non-point source pollutants via the Kalamazoo River to Lake Michigan, and that the nearshore waters around the mouth of the Kalamazoo River are heavily used for recreation including bathing (Oval Beach, Saugatuck State Park).

Approaches for mitigation of agricultural non-point source pollution include setbacks from water bodies, buffer and filter strips, wetland restoration, and a large number of best management practices (BMPs) for soil and nutrient conservation. No-till cultivation has proven value for reducing soil erosion, although recent research suggests that dissolved phosphorus mobilization from the soil surface may be enhanced. Programs to encourage adoption of BMPs (e.g., Agricultural Water Enhancement Program) as well as setting aside sensitive farmland as conservation lands (e.g., Conservation Reserve Program) would best be applied preferentially to subwatersheds with the lowest environmental quality scores in Table 23, and within those subwatersheds the lands closest to water bodies (streams and lakes) should be highest priority from the standpoint of non-point source pollution reduction.

Agricultural areas with constructed water drainage systems deserve special attention because they can effectively deliver nutrients and pathogens directly to surface waters that would otherwise be attenuated or eliminated as water traveled via natural flow paths. In the Kalamazoo River watershed, such areas are especially concentrated in the Gun and Rabbit river watersheds but are also found elsewhere. In the rural/agricultural mitigation areas, the pollutant sources are prioritized as follows:

- Overland runoff and constructed drainage systems The intensive row-crop agriculture typical of the region predisposes land to soil erosion and nutrient movement, and proximity to water bodies makes non-point source pollution much more likely. Tile drains and channelized streams enhance the transport of pollutants to downstream water bodies. The lands that are most susceptible to "offfarm" movement of sediments, nutrients and pathogens should be identified for mitigation and, where appropriate, conservation set-asides or restoration measures.
- 2. Sediments and nutrients in overland flow. A number of BMP methods are available to effectively slow or retain water and encourage infiltration or at least deposition of sediments before runoff reaches streams and lakes. These have proven value in reducing non-point source pollution loading.
- 3. Fertilizers, application of manure, tillage, etc. Much has already been done in this regard, but occasional problems still occur, sometimes involving inappropriate siting or timing of agricultural activities especially concentrated animal feeding operations (CAFOs) and small to mid-sized animal feeding operations (AFOs) spreading excess manure. The proliferation of concentrated animal feeding operations has also attracted attention because the manure applications to farm fields are conspicuous and sometimes create problems for water quality in nearby waters. Manure runoff may contain pathogens, as well as nutrients that can stimulate algal growth and lead to oxygen depletion if they reach surface waters.
 - 9.3. Ecosystem Restoration Areas to Ameliorate Non-Point Source Pollution

Ecosystem restoration as used here refers to actions to encourage the return of a degraded or altered ecosystem to a more natural state, such that it better provides ecosystem services which, in the case of water quality, can include maintenance of natural hydrology and prevention or amelioration of pollutant loads. There are many opportunities for aquatic ecosystem restoration in the Kalamazoo River watershed; a few examples are discussed here.

Old dams that no longer serve useful purposes and often have become unsafe are obvious restoration opportunities. These include some dams along the Kalamazoo River mainstem as well as many smaller dams along streams throughout the river network.

The KRWC has long advocated for removal of several old dams on the lower Kalamazoo River between Plainwell and Allegan, and these projects are necessarily tied to the removal of PCB-contaminated sediments behind the dams. Their eventual removal should result in improved water quality, particularly with regard to suspended algae that

grow and persist in backwaters behind impoundments (Reid and Hamilton 2007), and would benefit river habitat and recreational uses as well.

The possibility of removal of the dam that forms Morrow Lake deserves study. Morrow Lake is a large reservoir above the PCB-contaminated reaches of the Kalamazoo River mainstem that affects surface-water quality in a surprising way. Heaton (2001), Reid and Hamilton (2007), and Baas (2009) have all documented how the sediments of this reservoir release massive quantities of phosphorus to downstream waters during the summer, adding up to a contribution similar in magnitude to the largest point sources in the river system. Presumably this is a legacy of high phosphorus loading over a prolonged period in the past, and based on studies in lakes it could persist for several decades. The dam is used for hydropower at present, and there is public boating access to the reservoir. Operation of the dam has produced undesirably large fluctuations in stream flow downstream, and algal growth in the reservoir makes downstream waters more turbid than they would otherwise be. The pros and cons of removal of this dam are thus complex but should be considered.

Restoration of channelized and tile-drained stream reaches is another measure that could ameliorate non-point source pollution. In some cases channelization drained formerly isolated wetlands or replaced more diffuse sheet flow across the land, whereas in others it simplified a formerly meandering stream channel, and/or disconnected a stream from its floodplain. Often these hydrological alterations have enabled agricultural and residential development that precludes restoration at present, but in other cases the "reclaimed" land has proven to be marginal or unsuitable for such uses. In cases where restoration is possible, benefits for water quality could justify land acquisition in conservation easements. The Gun River plain is a subwatershed with a particularly large amount of land classed as potential wetland restoration area (Figure 18). A smaller area of agricultural land drainage located south of Battle Creek in the Minges Brook watershed is presently targeted for restoration of natural wetlands and stream channels (contact Calhoun County Drain Commissioner).

9.4. High-Quality Aquatic Ecosystems Preservation Areas

While the emphasis of much of this Plan has been on actions to mitigate current human impacts on surface waters, it is also important to guard against future changes that might threaten the quality of our best surface waters. Inventories of natural features are one way to identify the surface waters in best ecological condition, in which biodiversity is usually the metric. Aquatic ecosystems that support the greatest biodiversity, including particularly rare and threatened species, tend to also have high water quality. Natural flow and flood regimes tend to support physical and biological processes that improve water quality, or at least do not degrade it. Wetlands are particularly important for water quality because they often retain or remove nutrients before they reach lakes and streams. Ecosystems of particular ecological importance are good candidates for conservation easements, which in the case of wetlands and water bodies should include ample upland buffer wherever possible.

A GIS modeling exercise has been completed that identifies priority areas for conserving high quality open land and wetlands to preserve water quality in the watershed. The Kalamazoo River Land Conservation Plan includes a GIS analysis of each parcel in the watershed and assigns a numeric conservation value based on landscape characteristics. The subwatersheds with the highest concentration of parcels with high conservation values have been identified to help target outreach to landowners and permanently protect high quality lands.

The MDEQ developed a GIS based tool that identifies existing wetlands and their associated functions (e.g., floodwater storage, sediment retention, and wildlife habitat, among many others; see Section 4.4 for full description). The tool will be available to users online in the near future. This tool should be used to identify and prioritize high quality aquatic ecosystems, in particular wetlands with important functional values, throughout the watershed that are important to conserve for water quality protection purposes.

In addition to preservation of areas that are important to biodiversity, we should consider measures to protect high-quality waters even if they are heavily altered and utilized by people. Gull Lake in the Four Townships watershed is a good example (see Attachment 6). Its shoreline is entirely developed, its water level is regulated, its fishery has long been manipulated, and it is heavily used for recreation. Nonetheless, given its importance to people, Gull Lake deserves special considerations regarding land use change and the implications for water quality. Similar high-quality lakes with outstanding recreational and aesthetic values include Gun Lake, a number of lakes in the City of Portage and Texas Township, and Goguac Lake in Battle Creek.

10. Goals and Objectives

Successful implementation of a watershed management plan is more likely to occur when the objectives are based on clearly defined goals. Goals can represent a long-term vision and also serve as guideposts established to keep everyone moving in the same direction and assess progress. Objectives are more specific actions that need to occur to achieve the stated goal. The goals and objectives for the Watershed address both water quality concerns and desired uses.

10.1. Goals and Objectives for Designated Uses

The following two goals are related to restoring and protecting the designated uses of water bodies in the KRW. Objectives for these goals are listed in Table 26.

1. Maintain designated uses by preventing or reducing pollutants threatening or impairing water quality and by preserving or managing Preservation and Ecosystem Restoration Areas.

2. Meet/restore designated uses by reducing pollutants threatening or impairing water quality in Urban/Suburban and Rural/Agricultural Mitigation Areas.

Regarding watershed loading reduction goals:

Phosphorus load reduction goals were calculated for agricultural and urban land uses and are included in some objectives in Table 26. The agricultural goal is based on Table 25. By implementing filter strips in 75% of agricultural lands within the suggested 100 meter riparian area, a whole watershed reduction of 7,865 pounds of phosphorus per year will result. By implementing at least the least efficient urban BMP (extended detention) from Table 34 on 30% of urban lands (including high density urban, low density urban, and transportation acreages listed in Table 3), a whole watershed reduction of 41,076 pounds of phosphorus per year will result. The Lake Allegan phosphorus TMDL drainage includes 76.4% of the whole watershed, thus a TMDL watershed area reduction of approximately 37,383 pounds of phosphorus. Therefore, by meeting these reduction goals across the whole watershed it is expected that the TMDL reduction goals will be met for nonpoint sources (see TMDL discussion in Section 8). Calculations are included in Attachment 12.

Status Pollutants and Impoirments loadings)							
Impointe							
Impairments							
to Designated							
Uses							
Goal No. 1 – Maintain designated uses by preventing or reducing pollutants threatening or impairing water quality and by preserving or managing							
Preservation and Ecosystem Restoration Areas.							
Priority Areas for Goal No. 1 – Buffers							
	d restore wetlands and open						
	sider alternatives to traditional						
Wildlife: Threatened –fragmentationagriculture and urban development.drain manage	ement.						
All (S) Drain management.							
	nfiltration in urban/urbanizing						
	ment watershed focused land-						
	g and stormwater management						
	00% onsite stormwater use or						
	o prevent predicted load						
increases.							
	vegetative cover in riparian						
	ert warm stormwater from						
	surfaces into holding basins.						
systems drainage systems.	C'1						
	nfiltration in urban/urbanizing						
	ment watershed focused land-						
	g and stormwater management						
	00% onsite stormwater use or						
	o prevent predicted load						
increases.							

Table 26. Goals and objectives as related to ranked pollutants, sources, and causes in the Kalamazoo River Watershed.

Designated Use and Status	Ranked* Pollutants and Impairments	Sources	Causes	Objectives (based on resource review and loadings)				
	to Designated Uses							
Goal No. 2 - Meet/restor	Goal No. 2 – Meet/restore designated uses by reducing pollutants threatening or impairing water quality in Urban/Suburban and Rural/Agricultural							
Mitigation Areas.								
Rural/Agricultural Mitigation Priority Area for Goal No. 2 – Impaired waters and buffers								
Other Indigenous Aquatic Life and Wildlife: Impaired - Lake Allegan watershed under 2001 TMDL for excess algal growth, phosphorus (total); Red Run Drain; Swains Lake Drain; Gun River Threatened – All	1. Nutrients (K)	Cropland erosion (K)	Conventional tillage practices. Plowing adjacent to water bodies.	Encourage BMPs such as filter strips, cover crops, reduced tillage; implement watershed focused land use planning. Reduce total watershed agricultural phosphorus loading by 7,865 lbs.**				
		Land application of manure (S)	Lack of adherence to manure management plans. Manure management plans may not be enforced for small and medium sized animal feeding operations. Improper manure handling and spreading.	Establish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.				
		Septic system failures and illicit connections (S)	Improperly designed, installed, and maintained septic systems. Unknown illicit connections.	Identify and correct 100% of illicit connections, repair or replace aging septic systems and recommend regular maintenance of systems.				
		Streambank-shoreline modification (S)	Lack of riparian vegetation. Inadequate soil erosion and sedimentation control. Flashy flows from changes in land use and lack of stormwater controls.	Stabilize stream flows to moderate hydrology, reduce suspended solids, and maintain the floodplain.				
	2. Sediment (K)	Cropland erosion (K)	Conventional tillage practices. Plowing adjacent to water bodies.	Encourage BMPs such as filter strips, cover crops, reduced tillage; implement watershed focused land use planning. Reduce total watershed agricultural phosphorus loading by 7,865 lbs.**				

Designated Use and	Ranked*	Sources	Causes	Objectives (based on resource review and
Status	Pollutants and	Sources		loadings)
	Impairments			
	to Designated			
	Uses			
	6. Habitat	Loss of habitat (K)	Filling and draining of wetlands.	Control known sources causing site specific
	degradation or		Development of open space for	habitat damages. Steer development toward
	fragmentation		agriculture and urban development.	appropriate lands.
	(K)		Drain management.	
	3. Unstable	Stormwater runoff (P)	Loss of floodplains and wetlands as	Restore wetlands.
	flow (K)		retention.	
			Drain management.	
		Road and bridge	Undersized culverts, poorly designed	Repair identified problem sites.
		crossings (S)	and maintained crossings.	
Urban/Suburban Mitigation		Goal No. 2 – Impaired wate		
Other Indigenous	1. Nutrients (K)	Stormwater runoff (K)	Discharge from impervious surfaces	Encourage infiltration in urban/urbanizing
Aquatic Life and			and developed areas.	areas, implement watershed focused land-
Wildlife: Impaired			Ineffective stormwater management.	use planning and stormwater management
- Lake Allegan				to achieve 100% onsite stormwater use or
watershed under 2001				infiltration to prevent predicted load
TMDL for excess algal				increases.
growth, phosphorus		Stormwater runoff (K)	Loss of retention capacity of	Implement BMPs to reduce urban loading
(total); Red Run Drain;			floodplains and wetlands.	of phosphorus by 41,077 lbs.**
Unamed Tributary to	2. Sediment (K)	Stormwater runoff (K)	Discharge from impervious surfaces	Encourage infiltration in urban/urbanizing
Kalamazoo River south			and developed areas.	areas, implement watershed focused land-
of the City of Plainwell;			Ineffective stormwater management.	use planning and stormwater management
Swains Lake Drain; Gun				to achieve 100% onsite stormwater use or
River				infiltration to prevent predicted load
Threatened – All				increases.
Threateneu – All		Stormwater runoff (K)	Loss of floodplains and wetlands as retention.	Implement BMPs to reduce urban loading
		Dood and bridge		of phosphorus by 41,077 lbs.** Repair identified problem sites.
		Road and bridge	Undersized culverts, poorly designed	Repair identified problem sites.
		crossings (S)	and maintained crossings.	
		Streambank-shoreline	Lack of riparian vegetation.	Stabilize stream flows to moderate
		modification (S)	Inadequate soil erosion and	hydrology, reduce suspended solids, and

Designated Use and Status	Ranked* Pollutants and Impairments to Designated Uses	Sources	Causes	Objectives (based on resource review and loadings)
			sedimentation control. Flashy flows from changes in land use and lack of stormwater controls.	maintain the floodplain.
	3. Unstable flow (K)	Stormwater runoff (P)	Loss of retention capacity of floodplains and wetlands. Discharge from impervious surfaces and developed areas. Ineffective stormwater management. Drain management.	Encourage infiltration in urban/urbanizing areas, implement watershed focused land- use planning and stormwater management to achieve 100% onsite stormwater use or infiltration to prevent predicted load increases.
Total and Partial Body Contact Recreation : Impaired – Axtell Creek, Davis Creek, Arcadia Creek; Threatened – urbanized watersheds	5. Pathogens- Bacteria (K)	Stormwater runoff (K)	Pets and urban nuisance wildlife (esp. Canada Geese)	Encourage infiltration in urban/urbanizing areas, implement watershed focused land- use planning and stormwater management to achieve 100% onsite stormwater use or infiltration to prevent predicted load increases. Encourage pet waste pick up and nuisance wildlife discouragement measures.

* Pollutant ranked by order of importance at the watershed scale. #1 is most important.

^{**} Generally, treating 30% of urbanized land uses in the entire watershed with typical BMPs will reduce phosphorus loading by 41,077 lbs. Treating 75% of agricultural land uses within a 100 meter riparian area with vegetated filter strips in the entire watershed will reduce phosphorus loadings by 7,865 lbs. The total load reduction combining agricultural and urban land uses then is 48,942 lbs. The Lake Allegan/Kalamazoo River phosphorus TMDL calls for a nonpoint source reduction of 50% from baseline 1998 watershed loadings from 76.4% of the watershed acreage (that which drains to Lake Allegan). Note stormwater is considered a nonpoint source pollutant in this TMDL program. It is assumed that achieving load reductions of 48,942 lbs using these BMPs across the whole watershed will result in reduction in the TMDL portion of the watershed by 37,383 lbs, which exceeds the 34,395 lbs reduction called for by the TMDL. Attachment 12 includes calculations.

10.2. Goals for Desired Uses

In addition to the designated uses established by state and federal water quality programs, stakeholders have identified several desired uses for the watershed. Desired uses are based on factors important to the watershed community. Desired uses may or may not have a direct impact on water quality. Table 27 lists the desired uses identified through ongoing ecosystem/watershed management efforts, public meetings, and discussions with watershed stakeholders. The desired uses listed all have a direct or indirect impact on water quality.

KRW Desired Use	General Definition
Coordinated development	Promote and achieve the environmental and economic benefits of planned communities through coordinated land use planning and low impact development
Information sharing	Promote continuing stakeholder involvement and communication across existing regulatory and non- regulatory land and water resource programs in the watershed
Fish and wildlife habitat	Protect and enhance the habitats on which indigenous, threatened, and endangered species depend
Open space and agriculture	Develop a green infrastructure network that supports viable agricultural and rural communities and promotes sustainable soils and water resources through permanent protection and management practices
Groundwater	Protect groundwater recharge and wellhead areas from contamination and overdrafting
Recreation	Promote a balance of undisturbed habitat and accessible water and non-motorized trails on or along appropriate sections of the Kalamazoo River and its tributaries
Human and ecosystem health	Promote accelerated efforts by the CERCLA and Great Lakes AOC programs removing PCBs from the food chain
Watershed monitoring	Increase efforts to better understand issues in the KRW and to create baselines for future reference
Climate change integration	Integrate implications of climate change into watershed planning and implementation
Watershed organization	Develop a sustainable organization to coordinate and implement the watershed management plan and strengthen the watershed implementation partner network.

Table 27. Desired uses of the Kalamazoo River Watershed.

The following goals were developed to address the desired uses identified by stakeholders. Objectives for these goals are listed below.

Goal 1. Promote and implement coordinated land use planning in the Kalamazoo River watershed, including:

- Regularly review, summarize, and update partners and the public on local plans, ordinances and regulations addressing polluted runoff and related water quality and natural resource issues
- Promote common set back requirements near surface waters
- Promote model language for development standards and ordinances
- Develop or promote resource tools for planning officials
- Gain local commitments to conduct planning at the watershed level and to recognize stormwater planning early in site planning and plan review
- Conduct technical workshops and provide technical assistance throughout the watershed regarding the importance of coordinated watershed and land use planning

Goal 2. Encourage continuing stakeholder involvement and information sharing across watershed scale regulatory and non-regulatory programs:

- Refine operations of the current voluntary "watershed communication center" targeting mayors, city managers, county administrators, governing bodies, planning commissioners, community development corporations, and neighborhoods about regional solutions to water resource problems through land use planning
- Refine operations of the "watershed communication center" targeting all state and federal agencies involved in pollution cleanup and prevention in the watershed (e.g., agricultural/rural support entities, stormwater, TMDL, NPS, NPDES, wellhead/groundwater, public health, Great Lakes Area of Concern, CERCLA, NRDA).
- Promote and grow the watershed partnership agreement
- Conduct semi-annual watershed technical meetings (technical focus)
- Conduct an annual watershed review meeting (all issues focus)

Goal 3. Protect open space and promote sustainable agricultural practices:

- Develop a green infrastructure network consisting of natural, open and working lands
- Promote the economic infrastructure necessary for a diverse and viable farming economy that is protective of water quality, groundwater, and healthy soil
- Promote the maintenance of rural character and viewsheds
- Define and enhance natural ecosystem functions

- Promote permanent water quality improvements through land protection using management practices
- Protect critical water resource areas through land protection tools

Goal 4. Protect habitat for native aquatic and terrestrial wildlife:

- Implement required, desirable, and preferred remedial projects identified in Area of Concern plans that result in Beneficial Use Impairment removal and lead to Area of Concern delisting
- Build support to include more sections of the Kalamazoo River and tributaries in the state's Natural Rivers Program
- Develop a community supported green infrastructure vision for the watershed that includes natural and working lands
- Develop a strategic conservation plan for the watershed that identifies natural and open lands that protect water quality and quantity
- Assist conservation organizations, local governments and landowners to preserve and manage wildlife habitat
- Minimize modification of sensitive habitat areas such as stream corridors
- Promote invasive species prevention programs
- Promote maximum riparian, and adjacent upland protections as well as ecological restoration objectives in designated coldwater subwatershed corridors

Goal 5. Protect groundwater resources:

- Promote existing and additional community well head protection programs
- Promote continued closure of abandoned wells
- Determine current and future amount of groundwater withdrawal and its potential impacts
- Develop strategies to prevent increased impervious surfaces in high recharge areas and to restore areas with high recharge potential, as appropriate
- Encourage stakeholder participation in State of Michigan groundwater conservation and dispute resolution associated with groundwater withdrawal regulation

Goal 6. Improve recreation infrastructure along river while respecting natural features:

- Encourage coordinated recreation planning that promotes sustainable uses of natural resources and protects the unique natural features of watershed communities
- Incorporate bank stabilization efforts and BMPs at access sites to minimize the impact of foot traffic and erosion
- Educate private and commercial river users on the proper management of woody debris to improve navigability without impacting fish habitat or hydrology
- Remove litter and trash along banks
- Educate boaters about limiting the movement of invasive species

Goal 7. Safeguard human and ecosystem health:

- Encourage safe use of contaminated sections of the lower Kalamazoo River Valley
- Promote public involvement in the CERCLA "Superfund" process
- Promote the use of AOC financial and technical resources to accelerate, enhance, or better cleanups primarily delivered by the CERCLA process
- Maintain regular communication with NRDA state and federal trustees and share ideas on natural resource remedial investment opportunities

Goal 8. Continue/increase watershed monitoring efforts:

- Partner with technical Watershed Partners to develop and implement a monitoring strategy to monitor water resource changes over time
- Coordinate volunteer road/stream crossing riparian surveys to assess current conditions and monitor changes over time as well identify problem sites
- Encourage monitoring and increased regulation of commercial groundwater withdrawals

Goal 9. Refine operations of an umbrella watershed organization to coordinate and implement the watershed management plan and to instill a sense of stewardship:

- Develop a funding strategy that includes membership, governmental unit, foundation and business support
- Identify potential future lead organizations if umbrella operations must be transferred from current voluntary leadership of the KRWC
- Secure sustainable funding to hire staff and implement the watershed management plan
- Create and grow a watershed management endowment
- Develop an annual work plan for the organization

Goal 10. Build the capacity to understand and adapt to climate change:

- Monitor and communicate the scientific consensus on local and regional implications of climate change and opportunities to take action
- Host periodic regional workshops to receive direct updates from global, national, and local experts, and to consider adaptation measures pertaining to water resource protection and management

11. Implementation Strategies

11.1. Action Plan by Priority Area

Table 28 contains recommended actions to achieve designated use and desired use goals.

Table 28. Kalamazoo River Watershed management action table.

		itiver waterblieu i	nanagement action	<i>cuni</i>							
Т	ask - Recommended or	Pollutant/Objective	Ranked Critical and		Lead	Cost	Funding	Milestones	Evaluation	Loading	
P	rioritized BMPs		Priority Areas/Sites							Quantification	
			- Locations								*
				.Е							*s
				ġ							ear
				ã							Y
											L

Designated Use Goals

Designated Use Goal 1. Maintain designated uses by preventing or reducing pollutants threatening or impairing water quality and by preserving or managing Preservation and Ecosystem Restoration Areas.

(1) Enact or improve water quality protection related ordinances	Prevent future stormwater problems. Preserve and restore wetlands and open space. Consider alternatives to traditional drain management.	High – communities predicted to experience rapid build-out; preservation areas Medium – all remaining drained lands	i	Municipalitie s	\$10,000 per municipality	Municipalities, MDEQ	By 2015: 90% of TMDL signatory municipalities By 2020: 100% of TMDL signatory municipalities; 10% of all other municipalities throughout watershed	Number of ordinances enacted; Number of municipalities with ordinances	Table 33	5
(2) Expand natural rivers or similar special designations	Preserve and restore wetlands and open space. Consider alternatives to traditional drain management.	High – Preservation areas Medium – expand along Kalamazoo River mainstem	1	KRWC	unknown	Voluntary, donations	Add area by 2020	Area added	NA	10
(3)Use landscape level wetlands functional assessment to advance wetland protection and restoration	Restore and protect wetlands; promote restoration options to landowners	High Priority: Gun River, Rabbit River, Spring Brook- Kalamazoo River, Battle Creek River Medium: Kalamazoo River (Zone C) mouth, South Branch Kalamazoo	S	Local sub- watersheds, KRWC, conservation districts	\$100,000	Grants	By 2016: identify priorities By 2020: protect/restore 500 acres	Number of acres protected/restor ed, Estimated load reductions	Table 33	5
(4) Conduct watershed wide Natural Features Inventory	Preserve and restore wetlands and open space.	Whole watershed	1	KRWC, partners	unknown	Grants	By 2020: funding secured	Project completed	NA	10

Task - Recommended or Prioritized BMPs	Pollutant/Objective	Ranked Critical and Priority Areas/Sites - Locations		Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	*
			Begin							Years*
(5) Implement land protection actions outlined in the land conservation plan	Preserve and restore high priority parcels identified in the land conservation plan (see Attachment 13)	High priority parcels in Pottawatomie Marsh, Swan Creek & Lake Allegan, Pine Creek, Fish Lake Area, Kalamazoo River – Augusta Floodplain, Augusta Creek, Silver Creek & Spring Brook, Battle Creek River headwaters	S	Conser- vancies (Southwest Michigan, West Michigan, Mid- Michigan)	\$3,000- \$9,000/acre for purchase, \$1,000- \$4,000/ease ment	Trusts, MDEQ, foundations	Conserved Lands (as of 2015): >55,000 acres By 2020: additional 1,200 acres	Number of acres protected; estimate loading prevented	Table 33	10
Designated Use Goal 2. M Both Urban/Su	C			0	pairing water qu	ality in Urban/Suł	ourban and Rural	//Agricultural Mitig	gation Areas.	

(6)Identify and correct illicit discharges to surface waters	Identify and correct 100% of illicit connections, repair or replace aging septic systems and recommend regular maintenance of systems.	High – Kalamazoo and Battle Creek Urbanized Areas Medium – All other cities and villages Low – remainder of watershed	i	Road and Drain commissions per IDEP, Cities, NRCS, Lake Associations	\$500-\$5,000 per site	Drain Commission, Municipalities, Road Commission	By 2015: 100% of TMDL signatory municipalities have illicit discharge detection plan; By 2020: 100% removal of identifiedillicit discharges/ connections	Number of connections or discharges identified and corrected. Number of systems.	NA	0

Task - Recommended or Prioritized BMPs	Pollutant/Objective	Ranked Critical and Priority Areas/Sites - Locations	Begin	Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	Years**
(7)Identify and correct failing septic systems	Identify and correct 100% of illicit connections, repair or replace aging septic systems and recommend regular maintenance of systems.	High – all areas close to waterbodies	i	County health, citizen referrals	\$500-\$5,000 per site	USDA Rural Development, Local Governments	By 2020: 100% of known systems	Number of systems; estimate load reduction	Table 35	20
(8)Dam removals	Control known sources causing site specific habitat damages.	High – high hazard dams Medium – dams preventing fish passage or damaging sensitive habitats	m	KRWC	Depends on sites - \$10,000 - \$5,000,000	Grants; landowner match	As of 2015: 1 dam on Mainstem at Ceresco removed. By 2025: 2 removed on mainstem of river; 2 tributary dams removed or fish passage	Dams removed	NA	10
Urban/Suburb	an									
(9)Utilize stormwater BMPs - Dry detention, wet retention, swales, rain garden, constructed wetlands	Implement BMPs to reduce urban loading of phosphorus by 50% per Lake Allegan TMDL program*.	High – Impaired waterbodies in Kalamazoo and Battle Creek Urbanized Areas (retrofits); all areas of new development Medium – remaining Urbanized Areas Low – remainder of watershed in riparian areas	i	Munici- palities, Drain and Road Commission	Depends on practice	Municipalities, MDEQ 319	By 2015: 10% of urban acreage treated by BMPs By 2020: 25% treated	Number of municipalities using practices; Estimate of pollutant loading reduction	Table 34; Attachment 9	0
(10)Enact/improve water quality protection related ordinances especially stormwater related	Encourage infiltration in urban/urbanizing areas, implement watershed focused	High – communities predicted to experience rapid build-out Medium – all	s	Munici- palities	\$2,500 per municipality	Municipalities, MDEQ 319	By 2017: 10% Municipalities By 2020: 25% Municipalities	Number of municipalities with ordinances	Attachment 3	5

Task - Recommended or Prioritized BMPs	Pollutant/Objective	Ranked Critical and Priority Areas/Sites - Locations	u	Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	* * S
			Begin							Years**
	land-use planning and stormwater management to achieve 100% onsite stormwater use or infiltration to prevent predicted load increases.	remaining drained lands								
(11)Promote outreach, education, and I&E sharing by permitted stormwater communities to unpermitted communities	Encourage infiltration in urban/urbanizing areas, implement watershed focused land-use planning and stormwater management consistent with DEQ MS4 stormwater performance standards	High – cities and villages without municipal stormwater permits Medium – townships predicted to build-out fastest Low – all other communities	S	Municipalitie s, Drain and Road Commission	Staff time/in- kind	Municipalities, MDEQ 319	By 2020: 100% of TMDL signatories implementing I&E plans	New stormwater ordinances and updated standards	NA	5
Rural/Agricult	ural									
(12)Utilize agricultural BMPs - <i>Filter strips</i>	Encourage BMPs such as filter strips, cover crops, reduced tillage; implement watershed focused land use planning. Reduce total watershed agricultural phosphorus loading by 50% per Lake Allegan TMDL*	High – Impaired waterbody subwatersheds, Gun River, Rabbit River Medium – Rice Creek, Battle Creek River	i	Landowners (NRCS, Conservation Districts)	Depends on practice	Farm Bill	By 2020: 50% of farms in riparian areas By 2025: 75% of farms in riparian areas	Number of acres; estimate load reduction; number of landowners	Table 34, Table 25	0
(13)Restore wetlands by removing tiles in ag drains	Restore wetlands	High –Gun River Medium – Rabbit River Low – Rice Creek, Battle Creek River	m	Landowners, NRCS	\$1,000 - \$2,000/ acre	WRP, Wetland organizations, MDEQ 319	By 2016: 100 acres By 2020: 300 acres	Acres restored; loading reduced	Table 33	10

Pollutant/Objective	Ranked Critical and Priority Areas/Sites - Locations		Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	~
		Begin							Years**
Establish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.	High – Four Townships Area Medium – Rabbit Rivers, Gun River Low – Rice, Battle Creek	i	Landowners (NRCS, Conservation Districts)	\$4,000 - \$10,000/plan (depends on the number of livestock)	Michigan Environmental Assurance Program, Farm Bill Programs	By 2015: 50% coverage By 2020: 75% coverage	Number of plans developed	NA	10
Preserve and restore wetlands and open space. Consider alternatives to traditional drain management.	High – Gun River Medium – Rice, Battle Creek, and Rabbit Rivers	S	Drain Commission s, Ag Agencies	\$20/ft revetments, \$7/foot debris management, \$20 ft. two stage ditch, over \$100/ft for j-hooks and cross vanes	Drain Assessments, MDEQ 319	By 2015: 2 projects By 2020: 5 projects	Number of miles of drain maintained or constructed with alternative drain techniques	NA	10
Control known sources causing site specific habitat damages. Steer development toward appropriate lands.	High – Rabbit River Medium – mitigation areas	0	CD, NRCS	\$2/ft fencing, \$1,200 - \$3,600/crossi ng structure, \$500/water source	Farm Bill	By 2015: 10% of known sites By 2020: 50% of known sites	Number of sites corrected; Estimate sediment and nutrient loading reduction	See subwatershed plans documents (plans listed in Table 1)	10
	Establish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading. Preserve and restore wetlands and open space. Consider alternatives to traditional drain management.	Priority Areas/Sites - LocationsEstablish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.High – Four Townships Area Medium – Rabbit Rivers, Gun River Low – Rice, Battle CreekPreserve and restore wetlands and open space. Consider alternatives to traditional drain management.High – Gun River Medium – Rice, Battle Creek, and Rabbit RiversControl known sources causing site specific habitat damages. Steer development towardHigh – Rabbit River Medium – mitigation areas	Priority Areas/Sites - LocationsFighEstablish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.High – Four Townships Area Medium – Rabbit Rivers, Gun River Low – Rice, Battle CreekiPreserve and restore wetlands and open space. Consider alternatives to traditional drain management.High – Gun River Medium – Rice, Battle Creek, and Rabbit RiverssControl known sources causing site specific habitat damages. Steer development towardHigh – Rabbit River Medium – mitigation areaso	Priority Areas/Sites - LocationsJEstablish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.High – Four Townships Area Medium – Rabbit Rivers, Gun River Low – Rice, Battle CreekiLandowners (NRCS, Conservation Districts)Preserve and restore wetlands and open space. Consider alternatives to traditional drain management.High – Gun River Medium – Rice, Battle Creek, and Rabbit RiverssDrain Commission s, Ag AgenciesControl known sources causing site specific habitat damages. Steer development towardHigh – Rabbit River Medium – mitigation areasoCD, NRCS	Priority Areas/Sites - LocationsPriority Areas/Sites - LocationsEstablish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.High – Four Townships Area Medium – Rabbit Rivers, Gun River Low – Rice, Battle CreekiLandowners (NRCS, Conservation Districts)\$4,000 - \$10,000/plan (depends on the number of livestock)Preserve and restore wetlands and open space. Consider alternatives to traditional drain management.High – Gun River Medium – Rice, Battle Creek, and Rabbit RiverssDrain Commission 	Priority Areas/Sites - LocationsPriority Areas/Sites - LocationsMichigan StepEstablish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.High – Four Townships Area Medium – Rabbit Rivers, Gun River Low – Rice, Battle CreekiLandowners (NRCS, Conservation Districts)Michigan Environmental Assurance Program, Farm Bill ProgramsPreserve and restore wetlands and open space. Consider alternatives to traditional drain management.High – Gun River Medium – Rice, Battle Creek, and Rabbit RiverssDrain Commission s, Ag AgenciesS20/ft revetments, S7/foot debris management, \$20 ft, two stage ditch, over \$100/ft for j-hooks and cross vanesDrain Assessments, MDEQ 319Control known sources causing site specific habitat damages. Steer development towardHigh – Rabbit River Medium – mitigation areasoCD, NRCS\$2/ft fencing, \$3,600/crossi ng structure, \$500/waterFarm Bill	Priority Areas/Sites - LocationsPriority Areas/Sites - Sites - CoveragePriority Areas/Sites - Sites - AgenciesMichigan - Environmental - Assurance - Program, Farm - Bill ProgramsBy 2015: 2 - Sites - Drain - Assessments, - AgenciesPriority Areas/Sites - Agencies<	Priority Areas/Sites - LocationsFigNumber of S10,000/plan (NRCS, Conservation Districts)Michigan S10,000/plan (depends on of livestock)By 2015: 50% coverage By 2020: 75% coverageNumber of plans developed By 2020: 75% coverageEstablish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.High – Four Townships Area Medium – Rabbit Rivers, Gun River Low – Rice, Battle CreekiLandowners (NRCS, Conservation Districts)S4,000 - \$10,000/plan (depends on of livestock)Michigan Environmental Assurance Program, Farm Bill ProgramsBy 2015: 20% projectsNumber of plans developed By 2020: 75% coveragePreserve and restore wetlands and open space. Consider alternatives to traditional drain management.High – Gun River Medium – Rice, Battle Creek, and Rabbit RiverssDrain Commission s, Ag AgenciesDrain revetments, S7/foot debris management, S20 ft. two stage ditch, over \$100/ft for j-hooks and cross vanesBy 2015: 10% of known sites gy 2020: 50%Number of sites corrected; Estimate setimationed or constructed with alternative drain management, S20 ft. two stage ditch, over \$100/ft for j-hooks and cross vanesBy 2015: 10% of known sites gy 2020: 50%Number of sites corrected; Estimate setimate strain ad cross vanesControl known specific habitat danages. Steer development towardHigh – Rabbit River methed and areasoCD, NRCS sS2/ft fencing, s3	Priority Areas/Sites - LocationsPriority Areas/Sites - LocationsQuantificationEstablish filter strips, encourage manure management planning and compliance with the plan on 100% of acres used for manure spreading.High – Four Townships Area Medium – Rabbit Rivers, Gun River Low – Rice, Battle CreekiLandowners (NRCS, Conservation Districts)Michigan Assurance of livestock)By 2015: 50% coverage By 2020: 75% coverageNumber of plans developed By 2020: 75% coverageNAPreserve and restore wetlands and open space. Consider alternatives to traditional drain management.High – Gun River Medium – Rice, Battle Creek, and Rabbit RiverssDrain SS20/ft reverments, S, Ag AgenciesDrain S20/ft. reverments, S20 ft. two vores study.By 2015: 2 projectsNumber of miles of drain maticated or oconstructed with alternative drain techniquesNAControl known sources causing site specific habitat damages. Steer dedum – mitigation areassOCD, NRCS s S2/ft fencing, s3,600/crossi ng structure, s500/crusterFarm Bill sited in down sites gy 2020: 50% of known sites of known sites gy 2020: 50% of known sites gy 2020: 50% of known sites gy 2020: 50%Number of sites corrected; By 2020: 50% of known sites gy 2020: 50% of known sites adiment thou and tiotent to adiment

Task - Recommended or Prioritized BMPs	Pollutant/Objective	Ranked Critical and Priority Areas/Sites - Locations		Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	
			Begin							Years**
(17)Support watershed- based MS4 stormwater plan implementation	Gain local commitments to conduct planning at the watershed level and to recognize stormwater planning early in site planning and plan review	All	i	KRWC	unknown	Drain Commission, Municipalities, Road Commission		Outreach programs continue		0
(18)Encourage initiatives that generate revenue for stormwater program implementation	Develop or promote resource tools for planning officials	All	1	KRWC	\$2,000/count y	Donations	By 2020: 1 municipality; By 2025: 2 municipalities	Number of counties with rules		10
(79)Adopt recognized nonpoint source management practice quantification and tracking system	Develop or promote resource tools for planning officials	All	1	Phosphorus TMDL or watershed entity	unknown	Grants	By 2016: system adopted	Use of system by distributed watershed service providers		5
(20)Improve zoning to locate high density or intensive uses in appropriate areas	Promote common set back requirements near surface waters	All	i	Private landowners (unnamed)	\$5,000/muni cipality	Municipalities	By 2015: 1 municipality By 2020: 2 municipalities	Number of municipalities with improved zoning maps		3
Goal 2. Encourage continu	ing stakeholder involven	ent and information sha	iring o	across watershea	l scale regulatory	y and non-regulato	ory programs			
(21)Support continued Lake Allegan/Kalamazoo River phosphorus TMDL strategic plan and subwatershed implementation actions	Refine operations of the current voluntary "watershed communication center"	Lake Allegan Watershed	i	KRWC	Depends on TMDL strategies implemented	Municipalities, MDEQ 319	Scheduled promotion of TMDL	Phosphorus concentrations and loads; resource improvements		0
(22)Promote locally led implementation of management practices in 303(d) listed waterbodies to pre-empt new TMDLs	Promote and grow the watershed partnership agreement	All	0	Subwater- shed partners	Depends on practices selected	Grants, landowners	New 303(d) listings are followed by actions within 2 years	Listings are regularly removed from list		0

Task - Recommended or Prioritized BMPs	Pollutant/Objective	Ranked Critical and Priority Areas/Sites - Locations	Begin	Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	Years**
(23)Utilize soil testing to determine appropriate application rates	Promote the economic infrastructure necessary for a diverse and viable farming economy that is protective of water quality, groundwater, and healthy soil	All	i	Landowners, MSU Extension	\$3.85/acre/y ear crops \$14/acre/yea r specialty crops	Unknown	Annual increase in testing	Number of test performed		0
(24)Develop a watershed Green Infrastructure plan	Develop a green infrastructure network consisting of natural, open and working lands	All	1	Regional planner	unknown	Grant	By 2020 completed			10
<i>Goal 4. Protect habitat for</i> (25)Target NRDA projects with multiple corridor benefits (e.g., increased floodplain protection, wetland preservation, greenspace continuity	native aquatic and terrer. Assist conservation organizations, local governments and landowners to preserve and manage wildlife habitat	strial wildlife PCB contaminated area	0	KRWC	unknown	Donations	Depends on agency process and compensation settlement	Projects in lower river corridor		20
(26)Restore concrete lined river/stream channels	Implement required, desirable, and preferred remedial projects identified in Area of Concern plans that result in Beneficial Use Impairment removal and lead to Area of Concern delisting	Where present	m	Munici- palities	unknown	Grant	By 2020: 2000 feet By 2025: 5000 feet	Length of channel restored		10
Goal 5. Protect groundwat	ter resources									
(27)Encourage wellhead protection program actions	Develop strategies to prevent increased impervious surfaces in high recharge	All	0	Munici- palities, watershed partners	unknown	Municipalities				

Task - Recommended or Prioritized BMPs	Pollutant/Objective	Ranked Critical and Priority Areas/Sites - Locations		Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	
		- Locations	Begin							Years**
	areas and to restore areas with high recharge potential, as appropriate									
Goal 6. Improve recreation	n infrastructure along riv	er while respecting natu	ral fea	utures						
(28)Encourage and develop linear trail programs, land and water, that balance access and preservation	Encourage coordinated recreation planning	All	0	Subwater- shed partners	unknown	Donations, grants	Trail mileage increases annually	Miles of trail implemented		0
Goal 7. Safeguard human	and ecosystem health	•		•						
(79)Educate public about special fish consumption advisories through distributed materials, signage, and face to face interaction	Encourage safe use of contaminated sections of the lower Kalamazoo River Valley	All	8	State agencies, KRWC		Grants		Awareness		0
(30)Promote State of Michigan mercury reduction plans	Encourage safe use of contaminated sections of the lower Kalamazoo River Valley	All	s	KRWC		Donations		Atmospheric concentration		0
(31)Investigate source of dioxins in subwatersheds on 303(d) listing; encourage regulatory response, laymen's interpretation, and public education where actionable	Encourage safe use of contaminated sections of the lower Kalamazoo River Valley	All	m	KRWC		Grants		Awareness		2
(32)Implement polychlorinated biphenyls contamination isolation and removal from the river environment	Promote public involvement in the CERCLA "Superfund" process	PCB contaminated area	0	Superfund parties		Superfund		Uncontrolled contamination, tissue concentrations		20

Task - Recommended or Prioritized BMPs	Pollutant/Objective	Ranked Critical and Priority Areas/Sites		Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	
		- Locations	Begin							Years**
(33Maintain and implement Area of Concern Remedial Action Plans to achieve Beneficial Use Impairment removal and AOC delisting	Promote the use of AOC financial and technical resources to accelerate, enhance, or better cleanups primarily delivered by the CERCLA process	PCB contaminated area	0	AOC agencies; Superfund parties; Natural Resource Damage Trustees; KRWC		AOC program		Uncontrolled contamination, tissue concentrations; habitat/populati on recovery		20
(34)Remove "Beach Closings" BUI	Encourage safe use of contaminated sections of the lower Kalamazoo River Valley	PCB contaminated area	0	AOC agencies, KRWC		AOC program		Removed		1
(35)Support MDEQ exploration of Aesthetics and Dredging BUIs	Encourage safe use of contaminated sections of the lower Kalamazoo River Valley	PCB contaminated area	S	AOC agencies, KRWC		AOC program		Removal of BUIs where appropriate		3
Goal 8. Continue/increase	watershed monitoring ef	forts								
	Partner with technical Watershed Partners to develop and implement a monitoring strategy to monitor water resource changes						By 2017			
(36)Develop watershed monitoring program that coordinates long-term needs of phosphorus TMDL, NPDES, and MDEQ basin rotation	over time	All	1	Universities, TMDL, SW, KRWC	unknown	Grants, contributions from permittees	statistical design completed By 2018 monitoring begins	Key water quality parameter trends can be detected		10

Task - Recommended or Prioritized BMPs	Pollutant/Objective	Ranked Critical and Priority Areas/Sites - Locations		Lead	Cost	Funding	Milestones	Evaluation	Loading Quantification	*
			Begin							Years**
Goal 9. Refine operations	of an umbrella watershed	l organization to coordin	ate a	nd implement th	e watershed mar	nagement plan and	to instill a sense oj	f stewardship		
	Develop a funding strategy that includes									
l l	membership,									
(37)Develop sustainable	governmental unit,						By 2017:	Buy in by		
watershed management	foundation and						framework	watershed		
funding	business support	NA	s	KRWC	unknown	Donations	created	partners		5
Goal 10. Build the capacit	n to understand and adar	t to alimate abange								
Obui 10. Buill the cupucu	y io unaersiana ana aaap	n io climale change	1				As of 2015:			Т
							rain barrel			
							program			
							developed to			
							increase			
							resiliency			
	Monitor and						By 2018			
	communicate the						customized			
	scientific consensus						materials			
(38)Create educational	on local and regional						finalized			
materials about current	implications of						By 2020: all			
climate change	climate change and						watershed	Materials		
implications and future	opportunities to take					Grants,	jurisdictions	distributed;		
predictions	action	All	S	KRWC	unknown	foundations	contacted	meetings held		4

In progress = I; Ongoing = o; Short = s; Medium = m; Long = 1

NRDA = Natural Resource Damage Assessment

* Lake Allegan/Kalamazoo River phosphorus TMDL calls for a nonpoint source reduction of 50% from baseline 1998 watershed loadings. Combined nonpoint monthly goals are 9,800 lbs from April to June and 4,088 lbs from July to September. Note stormwater is considered a nonpoint source pollutant in this TMDL program.

** Years to complete

11.2. Information and Education

Introduction

The KRWMP Information & Education (I&E) Plan was formulated through the efforts of the KRWC. The purpose of the plan is to provide a framework to inform and motivate the various stakeholders, residents and other decision makers within the watershed to take actions that can protect water quality (Table 29). This working document will also provide a starting point for organizations within the watershed looking to provide educational opportunities or outreach efforts.

Information & Education Goal

The I&E plan will help to achieve the watershed management goals by increasing the involvement of the community in watershed protection efforts through awareness, education and action. The watershed community can become involved only if they are informed of the issues and are provided information and opportunities to participate. The I&E plan lists specific tasks to be completed

Table 29. Target audien Target Audiences	Description of Audience	General Message Ideas
Businesses	This audience includes businesses engaging in activities that can impact water quality such as lawn care companies, landscapers, car washes, etc.	Clean water helps to ensure a high quality of life that attracts workers and other businesses.
Developers/Builders/En gineers	This audience includes developers, builders, carpet cleaners, property management companies, and engineers.	Water quality impacts property values.
Farmers	This audience includes both agricultural landowners and those renting agricultural lands and farming them.	Protecting water quality is a long- term investment; money is saved by decreasing inputs (fuel, fertilizer)
Government Officials and Employees	This audience includes elected (board and council members) and appointed (planning commissions and zoning board of appeals) officials of cities, townships, villages and the county. This audience also includes the drain commission and road commission staff. It also includes state and federal elected officials.	Water quality impacts economic growth potential. Water quality impacts property values and the tax revenue generated in my community to support essential services. Clean drinking water protects public health.
Kids/Students	This audience includes any child living or going to school in the watershed.	Clean water is important for humans and wildlife. We all depend on water.
Property Owners	This audience includes any property owner in the watershed.	Water quality impacts my property value and my health.
Riparian Property Owners	This audience includes those property owners that own land along a river, stream, drain or lake.	Water quality impacts my property value and my health.

Table 29. Target audiences.

Watershed Issues

The priority issues for the watershed are described below. Each of these issues relate back to the goals and actions in the KRWMP.

For each major issue, priority target audiences have been identified. The priority audiences were selected because of their influence or ability to take actions, which would improve or protect water quality.

- Watershed Awareness Watershed residents need to understand that their everyday activities affect the quality of water resources. All watershed audiences need to be made aware of the priority pollutants. Lastly, education efforts should, whenever possible, offer audiences solutions to improve and protect water quality.
- Land Use Change Audiences need to understand that land use change can disrupt the natural hydrologic cycle in a watershed, but that low impact building practices can offer protection.
- Stormwater Runoff Stormwater runoff education efforts should increase awareness of stormwater pollutants, sources and causes, especially the impacts of impervious (paved or built) surfaces and their role in delivering water and pollutants to water bodies.
- Natural Resources Management and Preservation Audiences need to understand that preservation and management of open space, wetlands, farmland and other natural features helps to reduce the amount of stormwater runoff entering water bodies, preserves natural ecosystems, and protects endangered species and ecosystem services.
- Agricultural Runoff Education efforts should seek to help audiences understand the impacts of agricultural runoff to natural waterbodies and constructed drains. A key concept is the need to reduce soil erosion from agricultural lands. Soil loss, and its associated impacts, is of great concern to farmers.
- Septage Waste Education activities should seek to educate audiences about the impacts of septic systems on water quality and the need for regular inspections and maintenance.

Distribution Formats

Because of the differences between target audiences, it will sometimes be necessary to utilize multiple formats to successfully get the intended message across. Distribution methods include the media, newsletters, email lists, blogs, online video, social networking, and passive distribution of printed materials. Below is a brief description of each format with some suggestions on specific outlets or methods.

1. Media

Local media is a key tool for outreach to several audience groups. The more often an audience sees or hears information about watershed topics, the more familiar they will become and the more likely they will be to use the information in their daily lives.

Keeping the message out in front through press releases and public service announcements is essential to the success of education and outreach efforts.

Key local newspapers include: the Kalamazoo Gazette (including the Hometown Gazette), the Battle Creek Enquirer, Michigan Farm News and the Farmer's Exchange.

Radio outlets include WMUK, WKZO, Michigan Farm Radio Network , WKMI – Kalamazoo Television outlets include WWMT Channel 3, WOOD Channel 8, WZZM Channel 13, WGVU Channel 35 and WXMI FOX Channel 17.

To reach more distant, rural watershed residents, watershed partners should be encouraged to assist in distributing information in local markets.

2. Newsletters and other direct mailings

Several municipalities, governmental agencies, utilities, County offices and non-profit organizations send out newsletters or other mailings which may be coordinated with various outreach efforts such as fact sheets or "Did you Know" messages.

3. E-Mail lists and Websites

The KRWC maintains an active website and membership list which can be used to reach residents of the watersheds as well as elected officials and businesses. As part of the Information and Education plan, other organizations should be encouraged to supply watershed related educational materials through their websites where appropriate. Enviromich provides an opportunity to advertise events and workshops to a large audience. Enviro-mich is a list serve for those in Michigan interested in environmental issues.

4. Passive Distribution

This method relies on the target audience picking up a brochure, fact sheet, or other information. This can occur by placing materials at businesses, libraries, township/city/village halls and community festivals and events.

Plan Administration and Implementation

An information and education implementation strategy (Table 30) is laid out for the KRW. This table lists specific tasks or activities, a potential lead agency and partners, timeframe, milestones and costs to educate target audiences for each watershed issue.

Roles and Responsibilities

The KRWC will continue to oversee the implementation of the I&E as well as make adjustments to the plan when necessary. An I&E committee will meet as needed to advise on educational efforts.

Existing Efforts

It is important to understand current education efforts being offered or resources that are available for use or adaptation in the watershed. In some cases, existing efforts may need additional advertisement or updating to more effectively transmit their intended message. A few existing efforts that could be supplemented or utilized in the watershed are described below.

- MSU Extension periodically sponsors a Citizen Planner Course in Southwest Michigan. The target audiences for this course are municipal and planning officials as well as citizens. Topics presented during each course include various land use planning topics and techniques.
- Several regional watershed partners periodically host educational workshops related to watershed and water quality topics.
- Stormwater work groups in Kalamazoo and Battle Creek conduct Stormwater outreach specific to permitted municipal separate storm sewage system (MS4) communities.
- The Lake Allegan/Kalamazoo River Phosphorus TMDL Implementation Committee conducts outreach specific to the Lake Allegan basin, the majority of the watershed.

Priorities

Project priorities will be established to direct resources to the areas that will gain the most benefit from the designated outreach activity. These priorities should be re-evaluated over time.

Highest priority activities include:

- Activities that promote or build on existing efforts and expand partnerships with neighboring watershed projects, municipalities, conservation organizations and other entities.
- Activities that promote general awareness and understanding of watershed concepts and project goals. The word "watershed" should become more commonly used with the general public over time.
- Activities that leverage external funding from local, state or federal sources.
- Activities that lead to actions (especially those in the watershed management plan), which help to improve and/or protect water quality.

Table 30 contains an education strategy relating activities to designated use goals.

Evaluation

Ultimately, evaluation should show if water quality is being improved or protected in the watershed due to education efforts being implemented. Since watersheds are dynamic systems, this can be difficult to accomplish (see evaluation measures in Table 30).

Issue	Priority Target Audience	Activity	Potential lead agency	Potential partners	Timeline* (milestone)	Evaluation	Costs
Watershed Awareness	All	(1)Produce and distribute 4 public service announcements/press releases per year ^{1,2}	KRWC	PART, MSUE	current (4 PSAs/year)	number of announcements	5 hours staff time/press release
		(2)Maintain website that makes watershed information easily available to the public ^{1,2}	TMDL, KRWC		current	website traffic - number of hits monthly	\$20 per month hosting fees + 10 hours staff time/month
		(3)Create a display and participate in 2-3 community festivals/year ^{1,2}	KRWC	PART	current (2-3 festivals/ year)	number of participants	\$200 per event + 30 hours staff time to develop awareness
		(4)Maintain watershed communication center ^{1,2}	KRWC	Other lead entity	current	number of messages	8 hours staff time per week
	Kids/ Students	(5)Develop a student stream monitoring program ^{1,2}	MSUE	KRWC	long-term (1 school/ year)	number of schools participating in program	\$1500 for program materials (nets, waders, etc) + 20 hours/month staff time
		(6)Plan and offer 1 teacher training workshop/year ^{1,2}	KRWC	MSUE	long-term (1 training/ year)	attendance at workshop and incorporation of watershed topics into curriculum	\$200/workshop + 40 hours staff time/year
		(7)Distribute KRWC curriculum materials on watersheds and water quality to teachers ^{1,2}	KRWC	School Districts	medium-term (1 schools/ year)	number of schools incorporating curriculum materials	\$200/school + 60 hours staff time

Table 30. Information and Education Strategy for the Kalamazoo River Watershed Related to Watershed Goals^{1,2}.

Land Use Change	Drain Comm.	(8)Meet one-on-one with drain commissioners to discuss alternative drain maintenance methods and ditch naturalization techniques and stormwater standards/ordinance ¹	DC, KRWC	PART	medium-term (1 commissioner/year)	miles of county drains converted and improvements in stormwater standards	20 hours staff time
Agricultural runoff and Land Use Change	Farmers	(9)Produce and distribute brochures/flyers/fact sheets to farmers about best management practices, cost share programs, wetland protection/restoration opportunities ²	CD, MSUE	NRCS	short-term (2 printed pieces/year)	number of practices installed, amount of Farm Bill \$ spent in the watershed, reduction in pollutants	\$1500 per direct mailing + 30 hours staff time/distribution
		(10)Plan and host at least 1 workshop per year and host a tour/field site visit at least every 2-3 years addressing agricultural runoff, best management practices, wetland protection and restoration ^{1,2}	CD, MSUE	NRCS	(1 workshop/ year and 1 tour/2-3 years)	number of attendees and evaluations completed	\$200-\$600/workshop + 80 hours/year
Land use change, stormwater runoff and	Govern- ment units, officials	(11)Promote trainings being offered on water quality and use planning, LID, and green infrastructure ¹	KRWC	SW, TMDL	current (2 trainings/ year)	increase in use of LID techniques	5 hours staff time/training
natural resource management and preservation		(12)Plan and host at least 1 workshop or summit per year on land use and water quality related issues and to share successes in watershed protection efforts and host a watershed tour every 2-3 years focusing on low impact development ¹	CD, Municipal ities, SW	KRWC	long-term (1 workshop/ year and 1 tour/2-3 years)	incorporation of watershed topics into land use planning	\$600/year + 80 hours staff time

		(13)Produce and distribute updated brochures/flyers/fact sheets on land use and water quality, low impact development, smart growth, green infrastructure etc ¹	SW	PART	current (2 printed pieces/year)	increased use of practices	\$800/printing & postage 80 staff hours/item
Land use change, stormwater runoff and natural resource management	Developers / builders/ engineers	(14)Develop and distribute newsletter articles and brochures, flyers and fact sheets on low impact development to SW Michigan realtor and builders associations ¹	SW, TMDL	PART	medium-term (1 printed piece/year)	increased use of LID practices	30 hours staff time/item
and preservation		(15)Plan and host a watershed tour to showcase LID every 2-3 years ¹	SW, TMDL	PART	medium-term (1 tour/2-3 years)	tour attendance and evaluations	100 hours/event + \$50/person
		(16)Promote use of statewide LID manual and trainings offered ¹	KRWC	SW, TMDL	short-term (1 training/ year)	attendance at trainings	80 hours staff time
Land use change, stormwater runoff and natural	Property owners	(17)Install storm drain markers and place door knob hangers to educate residents about stormwater runoff ²	PART		current (2 municipalities/year)	number installed	40 hours staff time to coordinate volunteers
resource management and preservation		(18)Produce a direct mailing on land protection options - focus on property owners in high priority protection areas and high priority wetland protection/restoration areas ¹	Land Conservan cies	Land Preservatio n Board	short-term (1mailing/ 2-3 years)	increased landowner interest in land preservation options	\$1000/printing and postage + 100 hours staff time
		(19)Host workshops/tours for property owners in high priority protection areas ¹	Land Conservan cies	KRWC	short-term (1 tour/ 2- 3 years)	attendance and evaluations completed	\$100-\$500/workshop + 80 staff hours

		(20)Distribute printed materials on what can be done to protect water quality and on land protection options for private landowners in tax or utility bills ^{1,2}	County and Township s	Land Conservanc ies	long-term (1 mailing/ year)	number of mailings	\$300 printing/postage 40 hours staff time
Stormwater runoff	Govern- ment units, employees	(21)Promote trainings on municipal operations (including road maintenance and construction) and best management practices to protect water quality ²	SW, Municipal ities	PART	medium-term (1 training/ year)	number of governmental employees attending trainings	20 hours/training opportunity
		(22)Distribute brochures/flyers/fact sheets about municipal operations and road construction and maintenance best practices for water quality ²	RC, Municipal ities		medium-term (1 printed piece/year)	number adopting watershed friendly practices	\$150/item printing and postage + 20 hours staff time/item
Stormwater runoff	Businesses	(23)Give presentations at local business gatherings about what businesses can do to protect water quality 1,2	DC, SW	KRWC	medium-term (1 presentation/ year)	number of business adopting watershed friendly practices	40 hours staff time/presentation
		(24)Distribute brochures/flyers/fact sheets about business operations best practices for water quality - focus on lawn care companies ²	SW, TMDL	KRWC	medium-term (1 distribution/ year	number of business adopting watershed friendly practices	\$200-\$500 printing/postage 30 hours staff time/item
Septage waste	Riparian property owners	(25)Develop 1 newsletter article per year for lake associations to utilize in	Health Dept, MSUE	KRWC	medium-term (1 article/ year)	number of readers (circulation of	10 hours staff time/article

	their newsletters ^{1,2}				publication)	
	(26)Develop and work with	Local gov.	KRWC	medium-term (2	number of	\$0.50each printing +
	lake associations to	_		lakes/year)	households in	100 hours staff
	distribute door knob hangers				distribution area	time/lake association
	about septic system					
	maintenance ²					
	(27)Encourage lake	MSUE	Local gov.	medium-term (2	improved septic	3 hours/household
	association members to			lakes/year)	maintenance and	
	meet with lake owners on a				reduced	
	one-on-one basis to discuss				pollutants	
	septic system maintenance ²					
Govern-	(28)Develop and distribute	MSUE,	Local gov.	medium-term	increased	\$400 printing/postage
ment	brochures/flyers/fact sheets	Health		(1distribution/4	number of septic	80 hours staff time
unit,emplo	about the impacts of failing	Dept		years)	related	
yees	septic systems and what				ordinances	
	local governments can do ²					
	(29)Work one-on-one with	CDs		current (3	increased	80 hours/municipality
	planning commissions to			municipalities/year)	number of	
	improve plans and zoning				improved septic	
	ordinances relating to septic				related	
	systems ²				ordinances	

¹ Maintain designated uses by preventing or reducing pollutants threatening or impairing water quality and by preserving or managing Preservation and Ecosystem Restoration Areas.

² Meet/restore designated uses by reducing pollutants threatening or impairing water quality in Urban/Suburban and Rural/Agricultural Mitigation Areas. KRWC = Kalamazoo River Watershed Council; MSUE = Michigan State University Extension; PART = All Partners; DC = Drain Commissioner; RC = Road Commissioner; SW = MS4 Stormwater permitees; TMDL = signatories and participants; CD = county conservation districts.

* short-term - within one year; medium-term - within 2-3 years; long-term - within 4-6 years

12. Moving from Plan to Action and Results

12.1. Knowledge and Awareness

The first level of evaluation is documenting a change in knowledge or increase in awareness. Measures and data collection for this level can take place in three specific ways:

- A large-scale social survey effort to understand individual watershed awareness and behaviors impacting water quality.
- A pre- and post-test of individuals at workshops focused on specific water quality issues.
- The tracking of involvement in a local watershed group or increases in attendance at water quality workshops or other events.

Additional evaluation methods for measuring and tracking knowledge and awareness can be found in the Information and Education Plan (Table 30).

The City of Battle Creek conducted a recent survey which gauged citizen awareness of watershed and stormwater issues. Large scale surveys reaching regional stakeholders will require partnership across watershed groups like stormwater permittees and the phosphorus TMDL implementation committee. These types of surveys require a specific Quality Assurance Plan and significant expertise in unbiased survey techniques.

12.2. Documenting Implementation

The second level of evaluation is BMP adoption or implementation. The measurement is mostly a documentation of successful implementation. The evaluation will involve identifying and tracking individuals, organizations and governmental units involved in implementing and adopting BMPs whether they be structural, vegetative or managerial. Data about the BMP implementation can be gathered simply through tracking the number of BMPs installed or adopted. This evaluation should be done annually.

Table 30 has milestones and specific evaluation methods proposed for measuring the progress of BMP implementation and improvements to water quality for each task in the action plan. The action plan should be reviewed at least annually to ensure progress is being made to meet the milestones. During the annual review, the action plan should be updated as tasks are completed and as new tasks are identified.

12.3. Monitoring Water Quality

Another level of evaluation is documenting changes in water quality through monitoring. The monitoring of water quality is a very complex task, which involves gathering data from a number of sources. Periodic assessments of the water quality in the watershed are conducted as part of the State of Michigan 5-year basin monitoring rotation conducted by the MDEQ Surface Water Assessment Section. Local efforts to monitor water quality include those of lake associations, drain commissioners, the Kalamazoo County Health Department, and subwatershed planners and implementers. Combining data gathered under these programs, with other periodic water quality assessments will provide a picture of water quality in the watershed.

Expanding Current Monitoring Efforts:

- Research low flow monitoring for new water withdrawal permit process
- Review MDEQ monitoring results and data summaries (every 5 years) to assess future monitoring
- Review County Health Department annual monitoring reports in Kalamazoo County (and wherever available)

Over the years the number of available stream monitoring gauges has been reduced due to funding limitations. Watershed partners may need to combine resources to be sure that real-time monitoring stations continue to operate.

Table 31 includes monitoring components and Table 32 summarizes monitoring programs working at the sub- or full watershed scale. Coordinating long term monitoring across the watershed is a long term desire.

Table 31. Monitoring components and evaluation criteria for Kalamazoo River Watershed. See attachment 5 for a narrative including water quality standards.

Impairment, Source, or Cause	Monitoring Components	Potential Parties to Implement Monitoring	Schedule for Implementation	Units of Measurement	Current Conditions	Evaluation Criteria
Sediment	Substrate embedded-ness	MDEQ, MSU	Long term (Assess in 2014 and every 5 years after)	Degree of embeddedness	Not known, baseline needed	Maintain or reduce embeddedness
	Macro- invertebrate sampling	MDEQ, MSU	Long term (Assess in 2014 and every 5 years after)	Numerical score based on quantity and diversity	Most monitored sites rank acceptable to excellent	Maintain "excellent" scores, increase scores for "acceptable" stream stretches
Nutrients	Water quality	MDEQ, TMDL participants, MSU, Stormwater permittees	Long term (Assess in 2014 and every 5 years after)	Water quality rating	The watershed is part of a phosphorus TMDL, requiring reductions; Lake Allegan in-lake goals of 60 ppb phosphorus average and 72 ppb at the inlet.	Monitor and track aquatic plant growth; monitor and track phosphorus levels; monitor and track conditions in Lake Allegan including fishery; monitor stormwater outfalls per MDEQ requirements
Unstable Flow	USGS flow gauge data	USGS, MDEQ, TU	Short term (2011) and annually thereafter	Cubic feet per second	Flow gauges record hydrographs during storm events, with peak flows and durations. TU creating a citizen monitoring network for stream flow measurements related to groundwater withdrawal program.	Document reduction of peak flows and duration; track flashiness
	Bank pins scour chains (previous research studies)	MDEQ	Unknown	Bank loss (inches, or centimeters per unit time)	Un-gauged locations have undergone bank erosion studies. Some pins may still be in use or usable	Useable pins could be checked as a follow up to individual research efforts. Three stations remain on the Battle Creek River that may be useable, also near Elm St. Dam

Temperature	Water temperature	MDEQ, County Health Departments, MSU; trained volunteers; TU	Short term (2011) and annually thereafter	Degrees	Coldwater designated streams present	Maintain average temperatures cold enough to support trout populations on 100% of designated coldwater streams
Pathogens, Bacteria	Water quality	County Health Departments, MSU	Ongoing	Bacteria counts per 100ml water	Impairments exist in urban streams	Meet WQS for full and partial body contact 100% of the time
	Water quality	FTWRC, GLQO, MSU	Ongoing	Genetic Source Tracking	No current indication of human or livestock sources at tested sites in the Four Township Watershed Areas	Meet WQS for full and partial body contact 100% of the time
Habitat Fragment- ation	Wetland inventory and assessment and conservation easements	MDNR, TMDL participants	Long-term (2015)	Acres of and photos of wetlands protected; records of conservation easements	Wetland loss evident due to agricultural and urban development	Increase permanently protected lands
	MDEQ stream habitat survey	MDNR	Long term (Assess in 2014 and every 5 years after)	Habitat evaluation score	Most monitored sites rank as acceptable	Maintain or increase scores until 100% of locations score "excellent" or "good"

FTRWC Four Township Water Resources Council MDEQ Michigan Department of Environmental Quality MDNR Michigan Department of Natural Resources FTWA Four Township Watershed Area GLQO Gull Lake Quality Organization MSU Michigan State University TMDL Total Maximum Daily Load TU Trout Unlimited

Table 32. Environmental monitoring summary.

Organization	Monitoring Site	Type of Analysis	Protocol	Current Monitoring	Recommended Future Monitoring	Test Agent; report contact
MDEQ	Kalamazoo River Basin monitored every 5 years	Macroinvertebrate survey	Protocol Procedure 51	Conducted in 2009	Once every 5 years (2014)	MDEQ; SWAS
	(specific stream sites vary)	Habitat survey	USEPA Rapid Bioassess-ment	Conducted in 2009	Once every 5 years (2014)	MDEQ; SWAS
		Water Chemistry TP, TN, DO, Metals	MDEQ	No current routine monitoring in FTWA	As needed based on identified concerns	MDEQ; SWAS
		E. coli	<i>E. coli</i> MPN/100ml	No current routine monitoring in FTWA	As needed based on identified concerns	MDEQ; SWAS
MDEQ and TMDLIC	Kalamazoo River mainstem sampling points between Galesburg and Lake Allegan (inflows and outflows of reservoirs and road crossings); also in reservoir sampling	ТР	MDEQ	Monthly grabs during growing season since 2001	Monthly	MDEQ and Wastewater Treatment Facility Labs; MDEQ Sylvia Heaton and City of Kalamazoo Sue Foune
Stormwater permittees	Outfalls	TP	MDEQ	Subset of known outfalls per year during dry and wet weather	Continue	Individual labs or private labs; Kalamazoo John Paquin, Battle Creek Christine Kosmowski
MDNR Fisheries	Several	Temperature	Handheld temperature probe	Last monitored 2000	Per MDNR assessment schedule	MDNR; Plainwell office
	Several	Fishery survey	MDNR	Last monitored early 1990's	Per MDNR annual work plan, contact MDNR	MDNR; Plainwell office
Kalamazoo County Health Department	County public beaches	E. coli	<i>E. coli</i> MPN/100ml	Weekly during annual use season since 2001	Weekly during annual use season	Kalamazoo County Health Department; same

Organization	Monitoring Site	Type of Analysis	Protocol	Current Monitoring	Recommended Future Monitoring	Test Agent; report contact
	County streams in Kalamazoo, and St. Joseph River basins. Also select monitoring in Barry County	E. coli	<i>E. coli</i> MPN/100ml	Weekly during annual use season	Weekly during annual use season	Kalamazoo County Health Department; same
	All listed above	Water quality parameters temperature, DO, pH, conductivity, turbidity	County	Weekly during annual use season	Weekly during annual use season	Kalamazoo County Health Department; same
FTWRC, GLQO, MSU	See Gull and Augusta Creeks Watershed Management Plan: the Four Township Watershed Area	<i>E. coli;</i> Genetic source tracking of <i>E.</i> <i>coli</i> , Enterococci, <i>Clostridium</i> <i>perfringens</i> (bacteria) and Coliphage (a virus that grows on <i>E.</i> <i>coli.</i>); numerous chemical parameters	<i>E. coli</i> MPN/100ml; MSU labs; MSU	Monthly	Monthly during use season; additional season and weather conditions desired; Genetic Source Tracking not as frequent only a few times per year	Kalamazoo County Health Department, FTWRC and GLQO; Health Department
Calhoun Conservation Districts grant projects	Kalamazoo River Ceresco Area Watershed Area; upper, mid, lower Crooked Cr; unnamed trib; Easterly/Dibble Drain; Pigeon Cr; also 3 stations on Rice Creek	Level 3 geomorphic assessment; elevation, cross section, pebble counts, lateral bank erosion with pins, aggredation- degradation with scour chains	BEHI	Unknown	Continue beyond short term grant funded projects	Calhoun Conservation District; same
USGS	Several in watershed	Discharge	USGS	Ongoing daily	Continue same frequency	USGS; <u>www.usgs.gov</u> "water", "real- time"

TP – Total phosphorus, TN – Total nitrogen, DO – Dissolved oxygen, SRP – Soluble reactive phosphorus, TDP – Total dissolved phosphorus FTRWC Four Township Water Resources Council

MDEQ Michigan Department of Environmental Quality MDNR Michigan Department of Natural Resources FTWA Four Township Watershed Area GLQO Gull Lake Quality Organization MSU Michigan State University – researchers USEPA United Stated Environmental Protection Agency CLMP – Cooperative Lakes Monitoring Program TMDLIC Total Maximum Daily Load Implementation Committee SWAS Surface Water Assessment Section Data sources online: MDEQ surface water data: http://www.michigan.gov/deq/0,1607,7-135-3313_3686_3728---,00.html. Kalamazoo County data: http://www.kalcounty.com/eh/lake-stream-monitoring.php USGS data: http://waterwatch.usgs.gov/

12.4. Estimating Pollutant Load Reductions

The last level of evaluation is to estimate a reduction in pollutant loadings. A pollutant loading is a quantifiable amount of pollution that is being delivered to a water body. Pollutant load reductions can be calculated based on the ability of an installed BMP to reduce the targeted pollutant. Pollutant loading calculations are best used at specific sites where structural BMPs are installed and detailed data about the reduction of pollutants can be gathered. Specific pollutant load reduction calculations should be completed for structural BMPs when they are proposed and installed.

In Table 28, under the last column (proposed evaluation methods), pollutant loading reduction calculations are suggested for evaluating several tasks in the action plan. These tasks typically include: protecting and restoring wetlands and sensitive lands, correcting failing septic systems, installing agricultural BMPs and utilizing urban stormwater BMPs. The other items in the action plan either deal with hydrological modifications or habitat or they are proactive and preventative measures (planning and rules). Estimating pollutant loads and load reductions for these types of practices is not feasible.

Typical pollutant and runoff volume reductions from recommended protection measures can be calculated by stakeholders using the Kalamazoo River Urban Stormwater BMP Screening Tool (Attachment 8). Table 33 provides a general sense of expected loading reductions from land conservation. For example, if one forested acre of land were converted to low density residential, the new load reduction would increase by 1 pound of total phosphorus/acre/year, 61 pounds total suspended solids/acre/year, and 0.2 acre-feet of runoff volume/acre/year. The table below provides a sense of what future loadings are being mitigated by protecting natural areas and agriculture from being developed for low density and high density residential purposes. The same table can be used to get a sense of the average estimated load reductions from converting agricultural land to wetlands, forest, or herbaceous open land.

		Reduction per Acre			
Land Use Type	Converted to	Total Phosphorus Load Reduction (pounds/ac/yr)	Total Suspended Solids Load Reduction (pounds/ac/yr)	Runoff Volume Reduction (acre-feet/ac/yr)	
Low Density Residential	Wetlands	0.6	115	-2.1	
	Forest	1.0	61	0.2	
	Herbaceous Open	1.0	61	0.2	
	Agriculture	0.5	61	0.2	
High Density Residential	Wetlands	1.1	644	-0.4	
	Forest	1.5	590	1.9	
	Herbaceous Open	1.5	590	1.9	
	Agriculture	1.0	590	1.9	
Agriculture	Wetlands	0.1	54	-2.3	
	Forest	0.5	0	0	
	Herbaceous Open	0.5	0	0	

Table 33. Comparison of higher loading land uses to lower loading land uses.

Note: The values above were calculated using the Kalamazoo River Urban Stormwater BMP Screening Tool assuming an average annual precipitation of 37.63 inches/year.

Table 34 is a matrix of potential pollutant load and runoff volume reductions per acre for the recommended urban stormwater BMPs presented in the Kalamazoo River Urban Stormwater BMP Screening Tool. Stakeholders can use the tool to estimate the expected load reductions from specific stormwater BMPs at specific critical areas, as noted in Table 28.

		Load/Volume Reductions (per Acre) by Land Use Type		
		Low Density Residential	High Density Residential	Roads/ Parking Lots
Grass Swale	TP (lbs/ac/yr)	0.5	1.0	2.5
	TSS (lbs/ac/yr)	131	660	1,019
	Runoff (ac-ft/ac/yr)	0.2	1.9	2.0
Extended Dry Detention	TP (lbs/ac/yr)	0.3	0.8	2.3
	TSS (lbs/ac/yr)	148	577	1,036
	Runoff (ac-ft/ac/yr)	0.2	1.7	1.8
Wet Detention	TP (lbs/ac/yr)	1.1	1.6	3.1
	TSS (lbs/ac/yr)	148	577	1,036
	Runoff (ac-ft/ac/yr)	0	1.7	1.8
Rain Garden	TP (lbs/ac/yr)	1.2	1.7	3.2
	TSS (lbs/ac/yr)	164	693	1,052
	Runoff (ac-ft/ac/yr)	0.4	2.1	2.2
Constructed Wetland	TP (lbs/ac/yr)	0.6	1.1	2.6
	TSS (lbs/ac/yr)	125	654	1,013
	Runoff (ac-ft/ac/yr)	0	1.7	1.8

 Table 34. Estimated load reductions and volume reduction per acre of land treated from recommended urban stormwater BMPS (by land use type).

Note: The values above where calculated using the Kalamazoo River Urban Stormwater BMP Screening Tool with rainfall of 37.63 inches/year. Efficiency values from Chesapeake Bay Stormwater Network (Schueler, 2008).

Attachment 9 contains additional information about BMPs including descriptions and operation/maintenance costs.

Table 35 provides a cursory estimate of loading from septic systems. It is important to note that several variables must be used to fully characterize the likely impacts septic systems have on surface water, for instance environmental variables, septic system variables, and physical variables all affect how pollutants move through groundwater. The age of the system, frequency of use, frequency of clean out, nutrient-containing products treated by the system, and distance to surface water can all change the exact loading from the system. Similarly, soil type, permeability, drainage factors, and phosphorus adsorption capacity must be considered when determining septic system impacts.

Pollutant	Units	Load (for every 1 gallon treated/year)	Load (per average septic system/year)*
Total suspended solids	lbs/yr	0.2	61.3
Total Phosphorus	lbs/yr	0.05	12.8
Total Nitrogen	lbs/yr	0.1	33.7
Biological oxygen demand	5-day	0.4	119.6
Ammonia nitrogen	lbs/yr	0.1	25.6

Table 35. Typical pollutant loading to groundwater from septic systems.

*Assuming the average septic system treats water from 4 people per day using approximately 70 gallons of water per person per day, or 280 gallons treated per day per septic system (source: Ohio Department of Natural Resource Loading Spreadsheet from Canter and Knox, 1985. *Septic Tank System Effects on Ground Water Quality*, Lewis Publishers).

12.5. Evaluating the Watershed Management Plan

The watershed management plan should be reviewed and updated as needed. The KRWC, or umbrella partnership leader, should take the lead in the management and action plan review process. As general guidance, the review should at a minimum include the following updates:

- Land Cover at a minimum every 10 years
- Demographics with every new US Census
- Future Growth and Development every 5-10 years
- Local Water Quality Protection Policies every 3 years
- Water Quality Summary every two years with the release of MDEQ Integrated Reports
- Scheduled TMDLs every two years with the release of MDEQ Integrated Reports or when a TMDL is completed
- Prioritization of areas, pollutants and sources every 5-10 years
- Goals and Objectives every 5-10 years
- Implementation (Action) Strategy review annually and update as needed
- Action Strategy Comparisons compare the overall watershed Action Plan with periodically updated subwatershed management unit action plans

13. References cited

- Aiello, C. 2006. Michigan Water Chemistry Trend Monitoring Great Lakes Tributaries 2004 Report. Michigan Department of Environmental Quality Water Division. Report #MI/DEQ/WD-06/045
- Allen, W. B., J. S. Miller, and W. W. Wood. 1972. Availability of water in Kalamazoo County, southwestern Michigan. U. S. Geological Survey Water Supply Paper 1973.
- Andresen, J. A. and J. A.Winkler. 2009. Weather and climate. Pages 288-314 in Schaetzl, R. J., J. Darden and D. Brandt, editors. Michigan geography and geology. Pearson Custom Publishing, New York.
- Baas, D. G. 2009. Inferring dissolved phosphorus cycling in a TMDL watershed using biogeochemistry and mixed linear models. Ph.D. Thesis, Michigan State University, East Lansing, Michigan.
- Bartholic, J., S. Batie, S. Seedang, H. Abbas, S. G. Li, W. Northcott, L. Wang, S. Lacy, S. A. Miller, J. Andresen, M. Kaplowitz, M. Branch, J. Asher, Y. Shi, and M. Selman. 2007. Restoring the Great Lakes water through the use of water conservation credits and Integrated Water Balance Analysis System. Final Report prepared under the Great Lakes Protection Fund Grant Number 763. Institute of Water Research, Michigan State University. http://www.iwr.msu.edu/research/projects.html
- Champman, K. A., and R. Brewer. 2008. Prairie and savanna in southern lower Michigan: history, classification, ecology. Mich. Bot., 47:1-48.
- Christensen, Norman L., Ann M. Bartuska, James H. Brown, Stephen Carpenter, Carla D'Antonio, Rober Francis, Jerry F. Franklin, James A. MacMahon, Reed F. Noss, David J. Parsons, Charles H. Peterson, Monica G. Turner, and Robert G. Woodmansee. 1996. The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management. Ecological Applications 6:665–691.
- Fongers, D. 2008. Kalamazoo River Watershed hydrologic study. Land and Water management Division, Michigan Department of Environmental Quality, Lansing, Michigan.
- Global Climate Change Impacts in the United States, Thomas R. Karl, Jerry M. Melillo, and Thomas C. Peterson, (eds.). Cambridge University Press, 2009.
- Grannemann, N.G. R.J. Hunt, J.R. Nicholas, T.E. Reilly, and T.C. Winter. 2008. The importance of ground water in the Great Lakes region. U.S. Geological Survey Water Resources Investigations Report 00-4008.
- Heaton, S. 2001. Total Maximum Daily Load (TMDL) for Total Phosphorus in Lake Allegan. Michigan Department of Environmental Quality.

- Michigan Department of Environmental Quality. 2003. Human Health Risk Assessment. Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site.
- Michigan Department of Environmental Quality. 2008. Guidance for Delisting Michigan's Great Lakes Areas of Concern. Report MI/DEQ/WB-06-001.
- Michigan Department of Natural Resources. 1987. Remedial Action Plan for the Kalamazoo River.
- Michigan Department of Natural Resources and Environment (MDEQ). 2010. Water Quality and Pollution Control in Michigan: 2010 Sections 303(d) and 305(b) Integrated Report.
- Kalamazoo River Watershed Council. 1998. The Kalamazoo River: beauty and the beast.Kalamazoo River Watershed Public Advisory Council, Kalamazoo, Michigan.
- Kincare, K. and G.J. Larson 2009. Evolution of the Great Lakes. Pages 174-190 in Schaetzl, R. J., J. Darden and D. Brandt, editors. Michigan Geography and Geology. Pearson Custom Publishing, New York.
- Poff, N.L., J.D. Allan, M. B. Bain, J.R. Karr, K.L. Prestegaard, B. Richter, R. Sparks, and J. Stromberg. (1997). The Natural Flow Regime: a new paradigm for riverine conservation and restoration. BioScience, 47: 769-784.
- Postel, S., and B. Richter (2003), Rivers for Life: Managing Water for People and Nature, Island, Washington, D. C.
- Reid, N. J. and S. K. Hamilton. 2007. Controls on algal abundance in a eutrophic river with varying degrees of impoundment (Kalamazoo River, Michigan, USA). Lake and Reservoir Management 23:219-230.
- Rheaume, S. J. 1990. Geohydrology and water quality of Kalamazoo County, Michigan, 1986-88. U.S. Geological Survey Water-Resources Investigations Report 90-4028.
- Rupert, M. G. 2008. Decadal-scale changes of nitrate in ground water of the United States, 1988-2004. Journal of Environmental Quality 37: S-240-S-248. doi:10.2134/jeq2007.0055
- Saad, D. A. 2008. Agriculture-related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin. Journal of Environmental Quality 37:S-209-S-225. doi:10.2134/jeq2007.0053
- Schaetzl, R. J., J. Darden and D. Brandt, editors. 2009. Michigan geography and geology. Pearson Custom Publishing, New York.
- Syed, A.U., and Fogarty, L.R., 2005, Trends in surface-water quality at selected National Stream Quality Accounting Network (NASQAN) stations, in Michigan: U.S. Geological Survey Scientific Investigations Report 2005–5158, 38 p.
- Webster, K. E., C. J. Bowser, M. P. Anderson and J. D. Lenters. 2006. Understanding the lake-groundwater system: Just follow the water. Pages 19-48 in Magnuson, J. J.,

T. K. Kratz, and B. J. Benson, editors. Long-term dynamics of lakes in the landscape. Oxford University Press, New York.

- Wesley, J.K. 2005. Kalamazoo River assessment. Michigan Department of Natural Resources, Fisheries Division, Special Report 35, Ann Arbor.
- Winter, T. C., J. W. Harvey, O. L. Franke, W. M. Alley. 1996. Groundwater and surface water: a single resource. U.S. Geological Survey. Circular 1139.
- USEPA. 1975. Report on Lake Allegan, Allegan County, Michigan. USEPA Region V, Working Paper Series No. 182. USEPA National Eutrophication Studies.